Skip to main content
Log in

Analytic explanation of the strong spin-dependent amplification in Hawking radiation from rotating black holes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Numerical studies of black hole greybody factors indicate that Hawking emission from a highly rotating black hole is strongly spin dependent, with particles of highest spin (gravitons) dominating the energy spectrum. So far, there has been no analytic explanation or description of this effect. Using “gravitomagnetism”, or the formal analogy between the Maxwell’s field equations for electromagnetism and Einstein’s equations for gravity, we were able to establish a link between the spin of the rotating black hole and spin of an emitted particle. Namely, the intrinsic spin of the particle creates a “mass dipole moment” which interacts with external gravitomagnetic field whose source is the rotation of the black hole. We showed that a rotating black hole prefers to shed its spin, i.e. tends to emit particles with the spin parallel to its own. We also showed that the probability for emission grows with the increasing spin of the emitted particles. The amplification factors can be huge if a black hole is highly rotating, i.e. close to extremal. When applied to central galactic black holes, the same physical mechanism indicate that particles orbiting around these black holes should have spins strongly correlated with the spin of the black hole, which may have implications for cosmic rays believed to be coming from these regions of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev. 93 (1954) 99 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  2. Y.B. Zeldovich, Generation of waves by a rotating body, Pisma Zh. Eksp. Teor. Fiz. 14 (1971) 270 [JETP Lett. 14 (1971) 180].

    Google Scholar 

  3. Y.B. Zeldovich, Amplification of cylindrical electromagnetic waves reflected from a rotating body, Zh. Eksp. Teor. Fiz. 62 (1972) 2076 [Sov. Phys. JETP 35 (1972) 1085].

    Google Scholar 

  4. W. Unruh, Separability of the neutrino equations in a Kerr background, Phys. Rev. Lett. 31 (1973) 1265.

    Article  ADS  Google Scholar 

  5. D.N. Page, Particle emission rates from a black hole. 2. Massless particles from a rotating hole, Phys. Rev. D 14 (1976) 3260 [SPIRES].

    ADS  Google Scholar 

  6. V. Frolov and I. Novikov, Black hole physics: basic concepts and new developments, Springer, Germany (1998) [SPIRES].

    MATH  Google Scholar 

  7. V.P. Frolov and D. Stojkovic, Quantum radiation from a 5-dimensional rotating black hole, Phys. Rev. D 67 (2003) 084004 [gr-qc/0211055] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. V.P. Frolov and D. Stojkovic, Black hole radiation in the brane world and recoil effect, Phys. Rev. D 66 (2002) 084002 [hep-th/0206046] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  9. V.P. Frolov and D. Stojkovic, Black hole as a point radiator and recoil effect on the brane world, Phys. Rev. Lett 89 (2002) 151302 [hep-th/0208102] [SPIRES].

    Article  ADS  Google Scholar 

  10. D. Stojkovic, Distinguishing between the small ADD and RS black holes in accelerators, Phys. Rev. Lett. 94 (2005) 011603 [hep-ph/0409124] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev. D 77 (2008) 076007 [arXiv:0711.3012] [SPIRES].

    ADS  Google Scholar 

  12. D.-C. Dai et al., Manual of BlackMax, a black-hole event generator with rotation, recoil, split branes and brane tension, arXiv:0902.3577 [SPIRES].

  13. D.-C. Dai, N. Kaloper, G.D. Starkman and D. Stojkovic, Evaporation of a black hole off of a tense brane, Phys. Rev. D 75 (2007) 024043 [hep-th/0611184] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. M. Casals, S.R. Dolan, P. Kanti and E. Winstanley, Bulk emission of scalars by a rotating black hole, JHEP 06 (2008) 071 [arXiv:0801.4910] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Jung, S. Kim and D.K. Park, Condition for the superradiance modes in higher-dimensional rotating black holes with multiple angular momentum parameters, Phys. Lett. B 619 (2005) 347 [hep-th/0504139] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. O.J.C. Dias, R. Emparan and A. Maccarrone, Microscopic theory of black hole superradiance, Phys. Rev. D 77 (2008) 064018 [arXiv:0712.0791] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT , JHEP 04 (2010) 019 [arXiv:0907.3477] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Mashhoon, Gravitoelectromagnetism, gr-qc/0011014 [SPIRES].

  19. R.M. Wald, Gravitational spin interaction, Phys. Rev. D 6 (1972) 406 [SPIRES].

    ADS  Google Scholar 

  20. L.I. Schiff, Motion of a gyroscope according to Einstein’s theory of gravitation, Proc. Nat. Acad. Sci. 46 (1960) 871 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. B. Mashhoon, Particles with spin in a gravitational field, J. Math. Phys. 12 (1971) 1075 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dejan Stojkovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, DC., Stojkovic, D. Analytic explanation of the strong spin-dependent amplification in Hawking radiation from rotating black holes. J. High Energ. Phys. 2010, 16 (2010). https://doi.org/10.1007/JHEP08(2010)016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)016

Keywords

Navigation