Skip to main content
Log in

S-duality improved superstring perturbation theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Strong-weak coupling duality in string theory allows us to compute physical quantities both at the weak coupling end and at the strong coupling end. Furthermore perturbative string theory can be used to compute corrections to the leading order formula at both ends. We explore the possibility of constructing a smooth interpolating formula that agrees with the perturbation expansion at both ends and leads to a fairly accurate determination of the quantity in consideration over the entire range of the coupling constant. We apply this to study the mass of the stable non-BPS state in SO(32) heterotic / type I string theory with encouraging results. In particular our result suggests that after taking into account one loop corrections to the mass in the heterotic and type I string theory, the interpolating function determines the mass within 10% accuracy over the entire range of coupling constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE].

  2. M.B. Green, S.D. Miller, J.G. Russo and P. Vanhove, Eisenstein series for higher-rank groups and string theory amplitudes, Commun. Num. Theor. Phys. 4 (2010) 551 [arXiv:1004.0163] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Asnin et al., High and low dimensions in the black hole negative mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, The heterotic string, Phys. Rev. Lett. 54 (1985) 502 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B 256 (1985) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Sen, SO(32) spinors of type-I and other solitons on brane-anti-brane pair, JHEP 09 (1998) 023 [hep-th/9808141] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Sen, Type I D particle and its interactions, JHEP 10 (1998) 021 [hep-th/9809111] [INSPIRE].

    ADS  Google Scholar 

  9. A. Sen, Stable nonBPS states in string theory, JHEP 06 (1998) 007 [hep-th/9803194] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Sen, Stable nonBPS bound states of BPS D-branes, JHEP 08 (1998) 010 [hep-th/9805019] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Bergman and M.R. Gaberdiel, Stable nonBPS D particles, Phys. Lett. B 441 (1998) 133 [hep-th/9806155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. J. Polchinski and E. Witten, Evidence for heterotic-type-I string duality, Nucl. Phys. B 460 (1996) 525 [hep-th/9510169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Polchinski, Dirichlet branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. J. Polchinski, S. Chaudhuri and C.V. Johnson, Notes on D-branes, hep-th/9602052 [INSPIRE].

  16. E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85 [hep-th/9503124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Frau, L. Gallot, A. Lerda and P. Strigazzi, Stable nonBPS D-branes in type-I string theory, Nucl. Phys. B 564 (2000) 60 [hep-th/9903123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Frau, L. Gallot, A. Lerda and P. Strigazzi, Stable nonBPS D-branes of type-I, hep-th/0003022 [INSPIRE].

  19. M. Frau, L. Gallot, A. Lerda and P. Strigazzi, D-branes in type-I string theory, Fortsch. Phys. 49 (2001) 503 [hep-th/0012167] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. J.J. Atick and A. Sen, Correlation functions of spin operators on a torus, Nucl. Phys. B 286 (1987) 189 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Kleinert and V. Schulte-Frohlinde, Critical properties of ϕ 4 -theories, World Scientific, River Edge U.S.A. (2001), pg. 489.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke Sen.

Additional information

ArXiv ePrint: 1304.0458

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, A. S-duality improved superstring perturbation theory. J. High Energ. Phys. 2013, 29 (2013). https://doi.org/10.1007/JHEP11(2013)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)029

Keywords

Navigation