Skip to main content
Log in

Exclusive signals of an extended Higgs sector

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Expectations for the magnitude of Higgs boson signals in standard Higgs search channels at the LHC relative to Standard Model (SM) expectations are investigated within the framework of various types of CP and flavor conserving two Higgs doublet models (2HDMs). Signals of the SM-like Higgs boson in different classes of 2HDM may be parameterized in terms of particular two-dimensional sub-spaces of the general four-dimensional space of Higgs couplings to the massive vector bosons, top quark, bottom quark, and tau lepton. We find fairly strong correlations among the inclusive di-photon channel and the exclusive di-photon and di-tau channels from vector boson fusion or associated production. Order one deviations from SM expectations in some of these channels could provide discriminating power among various types of 2HDMs. The ratio of exclusive di-photon to di-tau channels is particularly sensitive to deviations from SM expectations. We also emphasize that deviations from SM expectations in standard Higgs search channels may imply observable signals of non-SM-like Higgs bosons in some of these same channels, in particular in di-photon and di-vector boson channels. The results cataloged here provide a roadmap for interpreting standard Higgs search channels in the context of 2HDMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Azatov, R. Contino, D. Del Re, J. Galloway, M. Grassi, et al., Determining Higgs couplings with a model-independent analysis of H → γγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].

    ADS  Google Scholar 

  9. A. Azatov, R. Contino and J. Galloway, Contextualizing the Higgs at the LHC, arXiv:1206.3171 [INSPIRE].

  10. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting the Higgs, arXiv:1206.4201 [INSPIRE].

  11. T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].

    ADS  Google Scholar 

  12. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, arXiv:1207.1716 [INSPIRE].

  13. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].

    ADS  Google Scholar 

  16. T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].

    Article  ADS  Google Scholar 

  17. E. Contreras-Campana, N. Craig, R. Gray, C. Kilic, M. Park, et al., Multi-lepton signals of the Higgs boson, JHEP 04 (2012) 112 [arXiv:1112.2298] [INSPIRE].

    Article  ADS  Google Scholar 

  18. E.L. Berger, Z. Sullivan and H. Zhang, Associated Higgs plus vector boson test of a fermiophobic Higgs boson, Phys. Rev. D 86 (2012) 015011 [arXiv:1203.6645] [INSPIRE].

    ADS  Google Scholar 

  19. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing various models of the 125 GeV boson in vector boson fusion, arXiv:1206.5853 [INSPIRE].

  20. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  21. A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs doublet model in light of the standard model H → τ +τ search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].

    ADS  Google Scholar 

  22. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].

    ADS  Google Scholar 

  23. A. Arhrib, R. Benbrik and N. Gaur, H → γγ in inert Higgs doublet model, Phys. Rev. D 85 (2012)095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  24. E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    ADS  Google Scholar 

  25. K. Blum and R.T. D’Agnolo, 2 Higgs or not 2 Higgs, Phys. Lett. B 714 (2012) 66 [arXiv:1202.2364] [INSPIRE].

    ADS  Google Scholar 

  26. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Barroso, P. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].

    ADS  Google Scholar 

  28. A. Azatov, S. Chang, N. Craig and J. Galloway, Higgs fits preference for suppressed down-type couplings: implications for supersymmetry, Phys. Rev. D 86 (2012) 075033 [arXiv:1206.1058] [INSPIRE].

    ADS  Google Scholar 

  29. D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Measuring Higgs boson couplings at the CERN LHC, Phys. Rev. D 62 (2000) 013009 [hep-ph/0002036] [INSPIRE].

    ADS  Google Scholar 

  30. M. Dührssen, Prospects for the measurement of Higgs boson coupling parameters in the mass range from 110 - 190 GeV, ATL-PHYS-2003-030 (2003).

  31. M. Dührssen, S. Heinemeyer, H. Logan, D. Rainwater, G. Weiglein and D. Zeppenfeld, Extracting Higgs boson couplings from CERN LHC data, Phys. Rev. D 70 (2004) 113009 [hep-ph/0406323] [INSPIRE].

    ADS  Google Scholar 

  32. C. Ruwiedel, N. Wermes and M. Schumacher, Prospects for the measurement of the structure of the coupling of a Higgs boson to weak gauge bosons in weak boson fusion with the ATLAS detector, Eur. Phys. J. C 51 (2007) 385 [INSPIRE].

    Article  ADS  Google Scholar 

  33. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977)1958 [INSPIRE].

    ADS  Google Scholar 

  35. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher, et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  38. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000)1.

    Google Scholar 

  40. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  41. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Craig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, N., Thomas, S. Exclusive signals of an extended Higgs sector. J. High Energ. Phys. 2012, 83 (2012). https://doi.org/10.1007/JHEP11(2012)083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)083

Keywords

Navigation