Skip to main content
Log in

Emerging potentials in higher-derivative gauged chiral models coupled to \( \mathcal{N}=1 \) supergravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new method to introduce scalar potentials to gauge-invariant chiral models coupled to supergravity. The theories under consideration contain consistent higher-derivative terms which do not give rise to instabilities and ghost states. The chiral auxiliaries are not propagating and can be integrated out. Their elimination gives rise to emerging potentials even when there is not a superpotential to start with. We present the case of a single chiral multiplet with and without a superpotential and, in the gauged theory, up to two chiral multiplets coupled to supergravity with no superpotential. A general feature of the emergent potential is that it is negative defined leading to anti-de Sitter vacua. In the gauge models, competing D-terms may lift the potential leading to stable and metastable de Sitter and Minkowski vacua as well with spontaneously broken supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ostrogradski, Mémoires sur les équations différentielles relatives au problème des isopérimètres, Mem. Ac. St. Petersburg VI Ser. 4 (1850) 385.

    Google Scholar 

  2. R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  4. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].

    ADS  Google Scholar 

  6. C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company, San Francisco U.S.A. (1973).

    Google Scholar 

  7. S. Cecotti, S. Ferrara, L. Girardello and M. Porrati, Lorentz Chern-Simons terms in N = 1 four-dimensional supergravity consistent with supersymmetry and string compactification, Phys. Lett. B 164 (1985) 46 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. S. Cecotti, S. Ferrara, L. Girardello, A. Pasquinucci and M. Porrati, Matter coupled supergravity with Gauss-Bonnet invariants: component lagrangian and supersymmetry breaking, Int. J. Mod. Phys. A 3 (1988) 1675 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. F. Farakos, C. Germani, A. Kehagias and E.N. Saridakis, A new class of four-dimensional N = 1 supergravity with non-minimal derivative couplings, JHEP 05 (2012) 050 [arXiv:1202.3780] [INSPIRE].

    Article  ADS  Google Scholar 

  10. C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].

    ADS  Google Scholar 

  12. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1., Phys. Lett. B 190 (1987) 86 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. S.J. Gates Jr., Why auxiliary fields matter: the strange case of the 4-D, N = 1 supersymmetric QCD effective action, Phys. Lett. B 365 (1996) 132 [hep-th/9508153] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].

    ADS  Google Scholar 

  16. J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P (X, φ) and the Ghost Condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].

    ADS  Google Scholar 

  17. D. Baumann and D. Green, Supergravity for effective theories, JHEP 03 (2012) 001 [arXiv:1109.0293] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Koehn, J.-L. Lehners and B.A. Ovrut, Higher-derivative chiral superfield actions coupled to N = 1 supergravity, arXiv:1207.3798 [INSPIRE].

  19. S. Cecotti, S. Ferrara and L. Girardello, Structure of the scalar potential in general N = 1 higher derivative supergravity in four-dimensions, Phys. Lett. B 187 (1987) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992), pg. 259.

    Google Scholar 

  21. B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B 87 (1979) 203 [INSPIRE].

    ADS  Google Scholar 

  22. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. G. Villadoro and F. Zwirner, De-Sitter vacua via consistent D-terms, Phys. Rev. Lett. 95 (2005) 231602 [hep-th/0508167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Catino, G. Villadoro and F. Zwirner, On Fayet-Iliopoulos terms and de Sitter vacua in supergravity: Some easy pieces, JHEP 01 (2012) 002 [arXiv:1110.2174] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Dragon, U. Ellwanger and M.G. Schmidt, Supersymmetry and supergravity, Prog. Part. Nucl. Phys. 18 (1987) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Cecotti, S. Ferrara and L. Girardello, Flat potentials in higher derivative supergravity, Phys. Lett. B 187 (1987) 327 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. N. Krasnikov, A. Kyiatkin and E. Poppitz, Structure of the effective potential in supersymmetric theories with higher order derivatives coupled to supergravity, Phys. Lett. B 222 (1989) 66 [INSPIRE].

    ADS  Google Scholar 

  28. S. Cecotti, S. Ferrara, L. Girardello, M. Porrati and A. Pasquinucci, Matter coupling in higher derivative supergravity, Phys. Rev. D 33 (1986) 2504 [INSPIRE].

    ADS  Google Scholar 

  29. S. Sasaki, M. Yamaguchi and D. Yokoyama, Supersymmetric DBI inflation, arXiv:1205.1353 [INSPIRE].

  30. C. Germani, Spontaneous localization on a brane via a gravitational mechanism, Phys. Rev. D 85 (2012) 055025 [arXiv:1109.3718] [INSPIRE].

    ADS  Google Scholar 

  31. B. de Wit, S. Katmadas and M. van Zalk, New supersymmetric higher-derivative couplings: full N = 2 superspace does not count!, JHEP 01 (2011) 007 [arXiv:1010.2150] [INSPIRE].

    Article  Google Scholar 

  32. S. Ferrara and B. Zumino, Supergauge invariant Yang-Mills theories, Nucl. Phys. B 79 (1974) 413 [INSPIRE].

    ADS  Google Scholar 

  33. J.A. Bagger, Coupling the gauge invariant supersymmetric nonlinear σ-model to supergravity, Nucl. Phys. B 211 (1983) 302 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Coupling supersymmetric Yang-Mills theories to supergravity, Phys. Lett. B 116 (1982) 231 [INSPIRE].

    ADS  Google Scholar 

  35. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kehagias.

Additional information

ArXiv ePrint: 1207.4767

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farakos, F., Kehagias, A. Emerging potentials in higher-derivative gauged chiral models coupled to \( \mathcal{N}=1 \) supergravity. J. High Energ. Phys. 2012, 77 (2012). https://doi.org/10.1007/JHEP11(2012)077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)077

Keywords

Navigation