Skip to main content
Log in

Supergravity for effective theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Higher-derivative operators are central elements of any effective field theory. In supersymmetric theories, these include operators with additional derivatives that appear explicitly in the superspace description. We develop a toolkit for coupling such super-symmetric effective field theories to supergravity. We explain how to write the action for minimal supergravity coupled to chiral superfields with arbitrary numbers of derivatives and curvature couplings. We discuss two examples in detail, showing how the component actions agree with the expectations from the linearized description in terms of a Ferrara-Zumino multiplet. In a companion paper [1], we apply the formalism to the effective theory of inflation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Baumann and D. Green, Signatures of supersymmetry from the early universe, arXiv:1109.0292 [INSPIRE].

  2. Y. Golfand and E. Likhtman, Extension of the algebra of Poincaré group generators and violation of P invariance, JETP Lett. 13 (1971) 323 [Pisma Zh. Eksp. Teor. Fiz. 13 (1971) 452] [INSPIRE].

    ADS  Google Scholar 

  3. D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109 [INSPIRE].

    ADS  Google Scholar 

  4. J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Adv. Study Inst. Ser. B Phys. 59 (1980) 135 [INSPIRE].

    Google Scholar 

  6. S. Weinberg, The quantum theory of fields. Volume 1: foundations, Cambridge University Press, Cambridge U.K. (1995).

    Google Scholar 

  7. S. Cecotti, S. Ferrara and L. Girardello, Structure of the scalar potential in general \( \mathcal{N} = {1} \) higher derivative supergravity in four-dimensions, Phys. Lett. B 187 (1987) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. S. Cecotti, S. Ferrara and L. Girardello, Flat potentials in higher derivative supergravity, Phys. Lett. B 187 (1987) 327 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. N. Krasnikov, A. Kyiatkin and E. Poppitz, Structure of the effective potential in supersymmetric theories with higher order derivatives coupled to supergravity, Phys. Lett. B 222 (1989) 66 [INSPIRE].

    ADS  Google Scholar 

  10. E. Poppitz, A superfield derivation of the low-energy effective action in \( \mathcal{N} = {1} \) , \( \mathcal{N} = {2} \) supergravity theories, Phys. Lett. B 238 (1990) 323 [INSPIRE].

    ADS  Google Scholar 

  11. D. Butter and S.M. Kuzenko, New higher-derivative couplings in 4D \( \mathcal{N} = {2} \) supergravity, JHEP 03 (2011) 047 [arXiv:1012.5153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Cheung, P. Creminelli, A. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. P. Creminelli, M.A. Luty, A. Nicolis and L. Senatore, Starting the universe: stable violation of the null energy condition and non-standard cosmologies, JHEP 12 (2006) 080 [hep-th/0606090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, arXiv:1009.2093 [INSPIRE].

  15. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  16. Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. S.J. Gates, M. Grisaru, M. Rocek and W. Siegel, Superspace or one thousand and onelessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].

    MathSciNet  Google Scholar 

  18. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Cheung, F. D’Eramo and J. Thaler, Supergravity computations without gravity complications, Phys. Rev. D 84 (2011) 085012 [arXiv:1104.2598] [INSPIRE].

    ADS  Google Scholar 

  20. R. Grimm, J. Wess and B. Zumino, A complete solution of the Bianchi identities in superspace, Nucl. Phys. B 152 (1979) 255 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. N. Dragon, Torsion and curvature in extended supergravity, Z. Phys. C 2 (1979) 29 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  22. G. Girardi, R. Grimm, M. Muller and J. Wess, Superspace geometry and the minimal, nonminimal, and new minimal supergravity multiplets, Z. Phys. C 26 (1984) 123 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. K. Stelle and P.C. West, Minimal auxiliary fields for supergravity, Phys. Lett. B 74 (1978) 330 [INSPIRE].

    ADS  Google Scholar 

  24. S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B 74 (1978) 333 [INSPIRE].

    ADS  Google Scholar 

  25. C. Beasley and E. Witten, New instanton effects in string theory, JHEP 02 (2006) 060 [hep-th/0512039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Antoniadis, E. Dudas and D. Ghilencea, Supersymmetric models with higher dimensional operators, JHEP 03 (2008) 045 [arXiv:0708.0383] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Weinberg, The quantum theory of fields. Volume 3: supersymmetry, Cambridge University Press, Cambridge U.K. (2000).

    Google Scholar 

  31. M. Magro, I. Sachs and S. Wolf, Superfield Noether procedure, Annals Phys. 298 (2002) 123 [hep-th/0110131] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. S.M. Kuzenko, Variant supercurrents and Noether procedure, Eur. Phys. J. C 71 (2011) 1513 [arXiv:1008.1877] [INSPIRE].

    ADS  Google Scholar 

  33. L. Senatore, K.M. Smith and M. Zaldarriaga, Non-Gaussianities in single field inflation and their optimal limits from the WMAP 5-year data, JCAP 01 (2010) 028 [arXiv:0905.3746] [INSPIRE].

    Article  ADS  Google Scholar 

  34. X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Khoury, J.-L. Lehners and B. Ovrut, Supersymmetric P(X,ϕ) and the ghost condensate, Phys. Rev. D 83 (2011) 125031 [arXiv:1012.3748] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Baumann.

Additional information

ArXiv ePrint: 1109.0293

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, D., Green, D. Supergravity for effective theories. J. High Energ. Phys. 2012, 1 (2012). https://doi.org/10.1007/JHEP03(2012)001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)001

Keywords

Navigation