Skip to main content
Log in

A holographic quantum critical point at finite magnetic field and finite density

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyze the phase diagram of \( \mathcal{N} = 4 \) supersymmetric Yang-Mills theory with fundamental matter in the presence of a background magnetic field and nonzero baryon number. We identify an isolated quantum critical point separating two differently ordered finite density phases. The ingredients that give rise to this transition are generic in a holographic setup, leading us to conjecture that such critical points should be rather common. In this case, the quantum phase transition is second order with mean-field exponents. We characterize the neighborhood of the critical point at small temperatures and identify some signatures of a new phase dominated by the critical point. We also identify the line of transitions between the finite density and zero density phases. The line is completely determined by the mass of the lightest charged quasiparticle at zero density. Finally, we measure the magnetic susceptibility and find hints of fermion condensation at large magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge U.K. (1999).

    Google Scholar 

  2. S. Sachdev, Quantum criticality and the phase diagram of the cuprates, arXiv:0910.0846.

  3. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  5. J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].

  6. A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  Google Scholar 

  9. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].

    ADS  Google Scholar 

  10. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

  11. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.S. Lee, A non-fermi liquid from a charged black hole a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

    ADS  Google Scholar 

  13. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  14. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality,Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

  15. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, arXiv:0912.1061 [SPIRES].

  16. S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].

    ADS  Google Scholar 

  17. A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [hep-th/0105132] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. R. Apreda, J. Erdmenger, N. Evans and Z. Guralnik, Strong coupling effective Higgs potential and a first order thermal phase transition from AdS/CFT duality, Phys. Rev. D 71 (2005) 126002 [hep-th/0504151] [SPIRES].

    ADS  Google Scholar 

  21. K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD, hep-th/0608046 [SPIRES].

  22. N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Parnachev and D.A. Sahakyan, Photoemission with chemical potential from QCD gravity dual, Nucl. Phys. B 768 (2007) 177 [hep-th/0610247] [SPIRES].

    Article  ADS  Google Scholar 

  24. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [hep-th/0605046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Karch, A. O’Bannon and L.G. Yaffe, Critical exponents from AdS/CFT with flavor, JHEP 09 (2009) 042 [arXiv:0906.4959] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. T. Faulkner and H. Liu, Condensed matter physics of a strongly coupled gauge theory with quarks: some novel features of the phase diagram, arXiv:0812.4278 [SPIRES].

  28. N. Evans, A. Gebauer, K.-Y. Kim and M. Magou, Holographic description of the phase diagram of a chiral symmetry breaking gauge theory, JHEP 03 (2010) 132 [1002.1885] [SPIRES].

    Article  Google Scholar 

  29. V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large-N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [SPIRES].

    Article  ADS  Google Scholar 

  30. M.C. Wapler, Thermodynamics of Holographic Defects, JHEP 01 (2010) 056 [arXiv:0911.2943] [SPIRES].

    Article  ADS  Google Scholar 

  31. K. Jensen, A. Karch, E.G. Thompson and D.T. Son, to be published (2010).

  32. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavour, JHEP 07 (2003) 049 [hep-th/0304032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  34. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  35. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. A. Karch, A. O’Bannon and K. Skenderis, Holographic renormalization of probe D-branes in AdS/CFT, JHEP 04 (2006) 015 [hep-th/0512125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys. B 546 (1999) 52 [hep-th/9901021] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. K.G. Wilson and J.B. Kogut, The Renormalization group and the ε-expansion, Phys. Rept. 12 (1974) 75 [SPIRES].

    Article  ADS  Google Scholar 

  40. T. Senthil et al., “Deconfined” quantum critical points, Science 303 (2004) 1490.

    Article  ADS  Google Scholar 

  41. P. Coleman and A.J. Schofield, Quantum criticality, Nature 433 (2005) 226.

    Article  ADS  Google Scholar 

  42. A. O’Bannon, Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D 76 (2007) 086007 [arXiv:0708.1994] [SPIRES].

    ADS  Google Scholar 

  43. A. Karch, D.T. Son and A.O. Starinets, Zero sound from holography, arXiv:0806.3796 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristan Jensen.

Additional information

ArXiv ePrint: 1002.2447

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K., Karch, A. & Thompson, E.G. A holographic quantum critical point at finite magnetic field and finite density. J. High Energ. Phys. 2010, 15 (2010). https://doi.org/10.1007/JHEP05(2010)015

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)015

Keywords

Navigation