Skip to main content
Log in

The weak gravity conjecture and the viscosity bound with six-derivative corrections

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The weak gravity conjecture and the shear viscosity to entropy density bound place constraints on low energy effective field theories that may help to distinguish which theories can be UV completed. Recently, there have been suggestions of a possible correlation between the two constraints. In some interesting cases, the behavior was precisely such that the conjectures were mutually exclusive. Motivated by these works, we study the mass to charge and shear viscosity to entropy density ratios for charged AdS5 black branes, which are holographically dual to four-dimensional CFTs at finite temperature. We study a family of four-derivative and six-derivative perturbative corrections to these backgrounds. We identify the region in parameter space where the two constraints are satisfied and in particular find that the inclusion of the next-to-leading perturbative correction introduces wider possibilities for the satisfaction of both constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  3. C. Vafa, The string landscape and the swampland, hep-th/0509212 [SPIRES].

  4. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  5. S. Cremonini, J.T. Liu and P. Szepietowski, Higher Derivative Corrections to R-charged Black Holes: Boundary Counterterms and the Mass-Charge Relation, JHEP 03 (2010) 042 [arXiv:0910.5159] [SPIRES].

    Article  ADS  Google Scholar 

  6. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.C. Myers, M.F. Paulos and A. Sinha, Holographic Hydrodynamics with a Chemical Potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on eta/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].

    ADS  Google Scholar 

  9. S.S. Pal, W eak Gravity Conjecture, Central Charges and η/s, arXiv:1003.0745 [SPIRES].

  10. Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal black holes, JHEP 12 (2007) 068 [hep-th/0606100] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Banks, M. Johnson and A. Shomer, A note on gauge theories coupled to gravity, JHEP 09 (2006) 049 [hep-th/0606277] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Giveon and D. Gorbonos, On black fundamental strings, JHEP 10 (2006) 038 [hep-th/0606156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Giveon, D. Gorbonos and M. Stern, Fundamental Strings and Higher Derivative Corrections to d-Dimensional Black Holes, JHEP 02 (2010) 012 [arXiv:0909.5264] [SPIRES].

    Article  ADS  Google Scholar 

  14. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  17. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity Bound, Causality Violation and Instability with Stringy Correction and Charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, Shear Viscosity and Chern-Simons Diffusion Rate from Hyperbolic Horizons, Phys. Lett. B 677 (2009) 74 [arXiv:0809.3388] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear Viscosity from Effective Couplings of Gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].

    ADS  Google Scholar 

  20. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  21. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear Viscosity from Gauss-Bonnet Gravity with a Dilaton Coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].

    ADS  Google Scholar 

  22. A. Ghodsi and M. Alishahiha, Non-relativistic D3-brane in the presence of higher derivative corrections, Phys. Rev. D 80 (2009) 026004 [arXiv:0901.3431] [SPIRES].

    ADS  Google Scholar 

  23. A. Sinha and R.C. Myers, The viscosity bound in string theory, Nucl. Phys. A 830 (2009) 295c–298c [arXiv:0907.4798] [SPIRES].

    ADS  Google Scholar 

  24. S.S. Pal, η/s at finite coupling, Phys. Rev. D 81 (2010) 045005 [arXiv:0910.0101] [SPIRES].

    ADS  Google Scholar 

  25. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet Gravity and Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Article  Google Scholar 

  26. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].

    Article  ADS  Google Scholar 

  27. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

    Article  ADS  Google Scholar 

  28. R. Brustein and A.J.M. Medved, Proof of a universal lower bound on the shear viscosity to entropy density ratio, Phys. Lett. B 691 (2010) 87 [arXiv:0908.1473] [SPIRES].

    ADS  Google Scholar 

  29. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The Viscosity Bound and Causality Violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  30. N. Banerjee and S. Dutta, Near-Horizon Analysis of η/s, arXiv:0911.0557 [SPIRES].

  31. R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity, JHEP 08 (2010) 067 [arXiv:1003.5357] [SPIRES].

    Article  ADS  Google Scholar 

  32. R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity, JHEP 08 (2010) 035 [arXiv:1004.2055] [SPIRES].

    Article  ADS  Google Scholar 

  33. D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  34. R.R. Metsaev and A.A. Tseytlin, Curvature Cubed Terms In String Theory Effective Actions, Phys. Lett. B 185 (1987) 52 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. L.F. Abbott and S. Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B 195 (1982) 76 [SPIRES].

    Article  ADS  Google Scholar 

  36. S. Deser and B. Tekin, Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett. 89 (2002) 101101 [hep-th/0205318] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev. 116 (1959) 1322 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. R.L. Arnowitt, S. Deser and C.W. Misner, Canonical variables for general relativity, Phys. Rev. 117 (1960) 1595 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. R.L. Arnowitt, S. Deser, and C.W. Misner, The dynamics of general relativity, in Gravitation: an Introduction to Current Research, L. Witten eds., John Wiley, New York U.S.A. (1962), pp 227-265.

    Google Scholar 

  41. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Pergamon Press, Oxford U.K. (1975).

    Google Scholar 

  42. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. S.W. Hawking, The path integral approach to quantum gravity, in General Relativity: An Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).

    Google Scholar 

  45. M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys. 98 (1985) 391 [SPIRES].

  46. G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. G. Barnich and G. Compère, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. G. Compère, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, arXiv:0708.3153 [SPIRES].

  49. J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. R.M. Wald and A. Zoupas, A General Definition of ”Conserved Quantities” in General Relativity and Other Theories of Gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].

    Article  ADS  Google Scholar 

  55. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  56. R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. R.R. Metsaev and A.A. Tseytlin, Order alpha-prime (Two Loop) Equivalence of the String Equations of Motion and the σ-model Weyl Invariance Conditions: Dependence on the Dilaton and the Antisymmetric Tensor, Nucl. Phys. B 293 (1987) 385 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. D.M. Hofman, Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Gorbonos.

Additional information

ArXiv ePrint: 1005.4718

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amsel, A.J., Gorbonos, D. The weak gravity conjecture and the viscosity bound with six-derivative corrections. J. High Energ. Phys. 2010, 33 (2010). https://doi.org/10.1007/JHEP11(2010)033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2010)033

Keywords

Navigation