Skip to main content
Log in

Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We extend the Helac-Dipoles package with the implementation of a new subtraction formalism, first introduced by Nagy and Soper in the formulation of an improved parton shower. We discuss a systematic, semi-numerical approach for the evaluation of the integrated subtraction terms for both massless and massive partons, which provides the missing ingredient for a complete implementation. In consequence, the new scheme can now be used as part of a complete NLO QCD calculation for processes with arbitrary parton masses and multiplicities. We assess its overall performance through a detailed comparison with results based on Catani-Seymour subtraction. The importance of random polarization and color sampling of the external partons is also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to ppt \( \overline{t} \) b \( \overline{b} \) + X at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [INSPIRE].

    ADS  Google Scholar 

  4. G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: pptot \( \overline{t} \) b \( \overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Dominant QCD Backgrounds in Higgs Boson Analyses at the LHC: A study of ppt \( \overline{t} \) + 2 jets at Next-To-Leading Order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  7. C. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    Article  ADS  Google Scholar 

  10. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].

    ADS  Google Scholar 

  11. N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].

    Article  ADS  Google Scholar 

  12. F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD, Phys. Rev. D 84 (2011) 114017 [arXiv:1108.2851] [INSPIRE].

    ADS  Google Scholar 

  14. S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].

    Article  ADS  Google Scholar 

  15. Z. Bern et al., Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Worek, On the next-to-leading order QCD K-factor for top t \( \overline{t} \) b \( \overline{b} \) production at the Tevatron, JHEP 02 (2012) 043 [arXiv:1112.4325] [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Greiner, G. Heinrich, P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Bevilacqua and M. Worek, Constraining BSM Physics at the LHC: Four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders, JHEP 10 (2012) 110 [arXiv:1207.5018] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Denner, L. Hosekova and S. Kallweit, NLO QCD corrections to W + W + jj production in vector-boson fusion at the LHC, Phys. Rev. D 86 (2012) 114014 [arXiv:1209.2389] [INSPIRE].

    ADS  Google Scholar 

  22. Z. Bern et al., Next-to-Leading Order W + 5-Jet Production at the LHC, Phys. Rev. D 88 (2013) 014025 [arXiv:1304.1253] [INSPIRE].

    ADS  Google Scholar 

  23. G. Bevilacqua, M. Czakon, M. Krämer, M. Kubocz and M. Worek, Quantifying quark mass effects at the LHC: A study of ppb \( \overline{b} \) b \( \overline{b} \) + X at next-to-leading order, JHEP 07 (2013) 095 [arXiv:1304.6860] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Campanario and M. Kubocz, Higgs boson production in association with three jets via gluon fusion at the LHC: Gluonic contributions, Phys. Rev. D 88 (2013) 054021 [arXiv:1306.1830] [INSPIRE].

    ADS  Google Scholar 

  25. G. Cullen et al., NLO QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett. 111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].

    Article  ADS  Google Scholar 

  26. H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T. Peraro, NLO QCD corrections to Higgs boson production in association with a top quark pair and a jet, arXiv:1307.8437 [INSPIRE].

  27. T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the production of a photon pair in association with two jets, arXiv:1308.3660 [INSPIRE].

  28. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. A. van Hameren, C. Papadopoulos and R. Pittau, Automated one-loop calculations: A proof of concept, JHEP 09 (2009) 106 [arXiv:0903.4665] [INSPIRE].

    Article  ADS  Google Scholar 

  33. G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    Article  ADS  Google Scholar 

  35. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Arnold et al., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Cullen et al., Golem95C: A library for one-loop integrals with complex masses, Comput. Phys. Commun. 182 (2011) 2276 [arXiv:1101.5595] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503–504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  43. Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [INSPIRE].

    Article  ADS  Google Scholar 

  44. Z. Nagy and D.E. Soper, Parton showers with quantum interference: Leading color, spin averaged, JHEP 03 (2008) 030 [arXiv:0801.1917] [INSPIRE].

    Article  ADS  Google Scholar 

  45. Z. Nagy and D.E. Soper, Parton showers with quantum interference: Leading color, with spin, JHEP 07 (2008) 025 [arXiv:0805.0216] [INSPIRE].

    Article  ADS  Google Scholar 

  46. C. Chung, M. Krämer and T. Robens, An alternative subtraction scheme for next-to-leading order QCD calculations, JHEP 06 (2011) 144 [arXiv:1012.4948] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C.-H. Chung and T. Robens, Nagy-Soper subtraction scheme for multiparton final states, Phys. Rev. D 87 (2013) 074032 [arXiv:1209.1569] [INSPIRE].

    ADS  Google Scholar 

  48. T. Robens, Nagy-Soper subtraction: a review, Mod. Phys. Lett. A 28 (2013) 1330020 [arXiv:1306.1946] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Czakon, C. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

    Article  ADS  Google Scholar 

  52. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Kanaki and C.G. Papadopoulos, HELAC: A package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. C.G. Papadopoulos, PHEGAS: A phase space generator for automatic cross-section computation, Comput. Phys. Commun. 137 (2001) 247 [hep-ph/0007335] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  55. A. Kanaki and C.G. Papadopoulos, HELAC-PHEGAS: Automatic computation of helicity amplitudes and cross-sections, hep-ph/0012004 [INSPIRE].

  56. A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: A generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].

    Article  ADS  Google Scholar 

  57. P. Mastrolia, G. Ossola, C. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].

    Article  ADS  Google Scholar 

  58. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    Article  ADS  Google Scholar 

  59. G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. P. Draggiotis, M. Garzelli, C. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. Z. Nagy and Z. Trócsányi, Calculation of QCD jet cross-sections at next-to-leading order, Nucl. Phys. B 486 (1997) 189 [hep-ph/9610498] [INSPIRE].

    Article  ADS  Google Scholar 

  63. D. Goetz, C. Schwan and S. Weinzierl, Random Polarisations of the Dipoles, Phys. Rev. D 85 (2012) 116011 [arXiv:1205.4109] [INSPIRE].

    ADS  Google Scholar 

  64. P. Draggiotis, R.H. Kleiss and C.G. Papadopoulos, On the computation of multigluon amplitudes, Phys. Lett. B 439 (1998) 157 [hep-ph/9807207] [INSPIRE].

    Article  ADS  Google Scholar 

  65. P.D. Draggiotis, R.H. Kleiss and C.G. Papadopoulos, Multijet production in hadron collisions, Eur. Phys. J. C 24 (2002) 447 [hep-ph/0202201] [INSPIRE].

    Article  Google Scholar 

  66. C.G. Papadopoulos and M. Worek, Multi-parton cross sections at hadron colliders, Eur. Phys. J. C 50 (2007) 843 [hep-ph/0512150] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M. Cacciari, G.P. Salam and G. Soyez, The anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  68. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  69. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  70. A. van Hameren, Kaleu: A General-Purpose Parton-Level Phase Space Generator, arXiv:1003.4953 [INSPIRE].

  71. R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. van Hameren, PARNI for importance sampling and density estimation, Acta Phys. Polon. B 40 (2009) 259 [arXiv:0710.2448] [INSPIRE].

    ADS  Google Scholar 

  73. Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet observables in electron positron annihilation, Phys. Rev. D 59 (1999) 014020 [Erratum ibid. D 62 (2000) 099902] [hep-ph/9806317] [INSPIRE].

    ADS  Google Scholar 

  74. Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

    ADS  Google Scholar 

  75. G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Worek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevilacqua, G., Czakon, M., Kubocz, M. et al. Complete Nagy-Soper subtraction for next-to-leading order calculations in QCD. J. High Energ. Phys. 2013, 204 (2013). https://doi.org/10.1007/JHEP10(2013)204

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)204

Keywords

Navigation