Skip to main content
Log in

NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present details of a calculation of the cross section for hadronic top-antitop production in next-to-leading order (NLO) QCD, including the decays of the top and antitop into bottom quarks and leptons. This calculation is based on matrix elements for ν e e+ μ \( {{\overline{\nu}}_{\mu }}\mathrm{b}\overline{\mathrm{b}} \) production and includes all non-resonant diagrams, interferences, and off-shell effects of the top quarks. Such contributions are formally suppressed by the top-quark width and turn out to be small in the inclusive cross section. However, they can be strongly enhanced in exclusive observables that play an important role in Higgs and new-physics searches. Also non-resonant and off-shell effects due to the finite W-boson width are investigated in detail, but their impact is much smaller than naively expected. We also introduce a matching approach to improve NLO calculations involving intermediate unstable particles. Using a fixed QCD scale leads to perturbative instabilities in the high-energy tails of distributions, but an appropriate dynamical scale stabilises NLO predictions. Numerical results for the total cross section, several distributions, and asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Nason, S. Dawson and R.K. Ellis, The One Particle Inclusive Differential Cross-Section for Heavy Quark Production in Hadronic Collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].

  2. W. Beenakker, W. van Neerven, R. Meng, G. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Top quark distributions in hadronic collisions, Phys. Lett. B 351 (1995) 555 [hep-ph/9503213] [INSPIRE].

    Article  ADS  Google Scholar 

  5. W. Beenakker et al., Electroweak one loop contributions to top pair production in hadron colliders, Nucl. Phys. B 411 (1994) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Moretti, M. Nolten and D. Ross, Weak corrections to gluon-induced top-antitop hadro-production, Phys. Lett. B 639 (2006) 513 [Erratum ibid. B 660 (2008) 607] [hep-ph/0603083] [INSPIRE].

  7. J.H. Kühn, A. Scharf and P. Uwer, Electroweak effects in top-quark pair production at hadron colliders, Eur. Phys. J. C 51 (2007) 37 [hep-ph/0610335] [INSPIRE].

    Article  ADS  Google Scholar 

  8. W. Bernreuther, M. Fücker and Z.-G. Si, Electroweak corrections to \( t\overline{t} \) production at hadron colliders, Nuovo Cim. B 123 (2008) 1036 [arXiv:0808.1142] [INSPIRE].

    ADS  Google Scholar 

  9. W. Hollik and M. Kollar, NLO QED contributions to top-pair production at hadron collider, Phys. Rev. D 77 (2008) 014008 [arXiv:0708.1697] [INSPIRE].

    ADS  Google Scholar 

  10. J.H. Kühn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].

    Article  Google Scholar 

  11. M. Beneke, P. Falgari and C. Schwinn, Soft radiation in heavy-particle pair production: All-order colour structure and two-loop anomalous dimension, Nucl. Phys. B 828 (2010) 69 [arXiv:0907.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Czakon, A. Mitov and G.F. Sterman, Threshold Resummation for Top-Pair Hadroproduction to Next-to-Next-to-Leading Log, Phys. Rev. D 80 (2009) 074017 [arXiv:0907.1790] [INSPIRE].

    ADS  Google Scholar 

  13. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-Group Improved Predictions for Top-Quark Pair Production at Hadron Colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].

    Article  ADS  Google Scholar 

  14. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].

    ADS  Google Scholar 

  15. S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \( t\overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Kniehl, Z. Merebashvili, J. Körner and M. Rogal, Heavy quark pair production in gluon fusion at next-to-next-to-leading \( O\left( {\alpha_s^4} \right) \) order: One-loop squared contributions, Phys. Rev. D 78 (2008) 094013 [arXiv:0809.3980] [INSPIRE].

    ADS  Google Scholar 

  17. C. Anastasiou and S.M. Aybat, The One-loop gluon amplitude for heavy-quark production at NNLO, Phys. Rev. D 78 (2008) 114006 [arXiv:0809.1355] [INSPIRE].

    ADS  Google Scholar 

  18. M. Czakon, A. Mitov and S. Moch, Heavy-quark production in massless quark scattering at two loops in QCD, Phys. Lett. B 651 (2007) 147 [arXiv:0705.1975] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Czakon, A. Mitov and S. Moch, Heavy-quark production in gluon fusion at two loops in QCD, Nucl. Phys. B 798 (2008) 210 [arXiv:0707.4139] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Czakon, Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R. Bonciani, A. Ferroglia, T. Gehrmann, D. Maˆıtre and C. Studerus, Two-Loop Fermionic Corrections to Heavy-Quark Pair Production: The Quark-Antiquark Channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Bonciani, A. Ferroglia, T. Gehrmann, A. Manteuffel and C. Studerus, Two-Loop Leading Color Corrections to Heavy-Quark Pair Production in the Gluon Fusion Channel, JHEP 01 (2011) 102 [arXiv:1011.6661] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Gehrmann-De Ridder and M. Ritzmann, NLO Antenna Subtraction with Massive Fermions, JHEP 07 (2009) 041 [arXiv:0904.3297] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Baernreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: First Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t} \) + X, arXiv:1204.5201 [INSPIRE].

  27. W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [INSPIRE].

    Article  ADS  Google Scholar 

  29. W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.M. Campbell and R.K. Ellis, Top-quark processes at NLO in production and decay, arXiv:1204.1513 [INSPIRE].

  31. A. Denner, S. Dittmaier, S. Kallweit and S. Pozzorini, NLO QCD corrections to WWbb production at hadron colliders, Phys. Rev. Lett. 106 (2011) 052001 [arXiv:1012.3975] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G. Bevilacqua, M. Czakon, A. van Hameren, C.G. Papadopoulos and M. Worek, Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order, JHEP 02 (2011) 083 [arXiv:1012.4230] [INSPIRE].

    Article  ADS  Google Scholar 

  33. SM and NLO Multileg Working Group collaboration, J. Andersen et al., The SM and NLO Multileg Working Group: Summary report, arXiv:1003.1241 [INSPIRE].

  34. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to pp\( t\overline{t}b\overline{b} \) + X at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: pp\( t\overline{t}b\overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Bevilacqua, M. Czakon, C. Papadopoulos and M. Worek, Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD, Phys. Rev. D 84 (2011) 114017 [arXiv:1108.2851] [INSPIRE].

    ADS  Google Scholar 

  37. R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [INSPIRE].

    Article  ADS  Google Scholar 

  38. T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].

    ADS  Google Scholar 

  39. C. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Berger et al., Next-to-Leading Order QCD Predictions for Z, γ + 3-Jet Distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].

    ADS  Google Scholar 

  41. C. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].

    Article  ADS  Google Scholar 

  42. H. Ita et al., Precise Predictions for Z + 4 Jets at Hadron Colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].

    ADS  Google Scholar 

  43. Z. Bern et al., Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].

    Article  ADS  Google Scholar 

  44. F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ+ jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].

    Article  ADS  Google Scholar 

  46. N. Greiner et al., NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G. Bevilacqua and M. Worek, Constraining BSM Physics at the LHC: Four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Complete electroweak O(α) corrections to charged-current e + e → 4 fermion processes, Phys. Lett. B 612 (2005) 223 [Erratum ibid. B 704 (2011) 667] [hep-ph/0502063] [INSPIRE].

  50. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

  51. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. ’t Hooft and M. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  56. S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    Article  ADS  Google Scholar 

  57. L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP 04 (2001) 006 [hep-ph/0102207] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

    Article  ADS  Google Scholar 

  59. F.A. Berends, R. Pittau and R. Kleiss, All electroweak four fermion processes in electron - positron collisions, Nucl. Phys. B 424 (1994) 308 [hep-ph/9404313] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions +γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Dittmaier and M. Roth, LUSIFER: A LUcid approach to SIx FERmion production, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini and M. Schulze, Finite-width effects in top-quark pair production and decay at the LHC, in SM and NLO MULTILEG and SM MC Working Groups collaborations, J. Alcaraz Maestre et al., The SM and NLO Multileg and SM MC Working Groups: Summary Report (2012) [arXiv:1203.6803] [INSPIRE].

  63. A. Denner, S. Dittmaier, S. Kallweit, S. Pozzorini and M. Schulze, Off-shell effects in top-antitop production at hadron colliders, in preparation.

  64. G. Bevilacqua et al., HELAC-NLO, arXiv:1110.1499 [INSPIRE].

  65. V.S. Fadin, V.A. Khoze and A.D. Martin, Interference radiative phenomena in the production of heavy unstable particles, Phys. Rev. D 49 (1994) 2247 [INSPIRE].

    ADS  Google Scholar 

  66. V.S. Fadin, V.A. Khoze and A.D. Martin, How suppressed are the radiative interference effects in heavy instable particle production?, Phys. Lett. B 320 (1994) 141 [hep-ph/9309234] [INSPIRE].

    Article  ADS  Google Scholar 

  67. K. Melnikov and O.I. Yakovlev, Top near threshold: All α s corrections are trivial, Phys. Lett. B 324 (1994) 217 [hep-ph/9302311] [INSPIRE].

    Article  ADS  Google Scholar 

  68. J. Küblbeck, M. Böhm and A. Denner, FEYNARTS: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  69. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  70. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to ttbb production at the LHC: 1. Quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD Corrections to Top Anti-Top Bottom Anti-Bottom Production at the LHC: 2. full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  73. S. Dittmaier, Weyl-van der Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1998) 016007 [hep-ph/9805445] [INSPIRE].

    ADS  Google Scholar 

  74. T. Binoth, J.P. Guillet, G. Heinrich, E. Pilon and C. Schubert, An Algebraic/numerical formalism for one-loop multi-leg amplitudes, JHEP 10 (2005) 015 [hep-ph/0504267] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. J. Fleischer and T. Riemann, A Complete algebraic reduction of one-loop tensor Feynman integrals, Phys. Rev. D 83 (2011) 073004 [arXiv:1009.4436] [INSPIRE].

    ADS  Google Scholar 

  76. D. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965) 181 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. G. Passarino and M. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Ferroglia, M. Passera, G. Passarino and S. Uccirati, All purpose numerical evaluation of one loop multileg Feynman diagrams, Nucl. Phys. B 650 (2003) 162 [hep-ph/0209219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. W. Giele, E.N. Glover and G. Zanderighi, Numerical evaluation of one-loop diagrams near exceptional momentum configurations, Nucl. Phys. Proc. Suppl. 135 (2004) 275 [hep-ph/0407016] [INSPIRE].

    Article  ADS  Google Scholar 

  80. W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. Phys. B 338 (1990) 349 [INSPIRE].

    Article  ADS  Google Scholar 

  81. S. Dittmaier, Separation of soft and collinear singularities from one loop N point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  82. R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z 0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M.W. Grünewald et al., Reports of the Working Groups on Precision Calculations for LEP2 Physics: Proceedings. Four fermion production in electron positron collisions, hep-ph/0005309 [INSPIRE].

  85. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e + e WW → 4 fermions in double pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].

    Article  ADS  Google Scholar 

  86. W. Beenakker, F.A. Berends and A. Chapovsky, Radiative corrections to pair production of unstable particles: results for e + e four fermions, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481] [INSPIRE].

    Article  ADS  Google Scholar 

  87. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  88. F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  89. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to pp/ \( p\overline{p} \)WW+jet+X including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].

    Article  ADS  Google Scholar 

  90. F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, NLO QCD corrections to WZ+jet production with leptonic decays, JHEP 07 (2010) 076 [arXiv:1006.0390] [INSPIRE].

    Article  ADS  Google Scholar 

  91. K. Hasegawa, S. Moch and P. Uwer, AutoDipole: Automated generation of dipole subtraction terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [INSPIRE].

    Article  ADS  Google Scholar 

  93. A. Bredenstein, S. Dittmaier and M. Roth, Four-fermion production at γγ colliders. 2. Radiative corrections in double-pole approximation, Eur. Phys. J. C 44 (2005) 27 [hep-ph/0506005] [INSPIRE].

    Article  ADS  Google Scholar 

  94. M. Ciccolini, A. Denner and S. Dittmaier, Strong and electroweak corrections to the production of Higgs + 2jets via weak interactions at the LHC, Phys. Rev. Lett. 99 (2007) 161803 [arXiv:0707.0381] [INSPIRE].

    Article  ADS  Google Scholar 

  95. A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  96. M. Jezabek and J.H. Kühn, QCD Corrections to Semileptonic Decays of Heavy Quarks, Nucl. Phys. B 314 (1989) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  97. M. Cacciari, G.P. Salam and G. Soyez, The Anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  98. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy quark hadroproduction cross-section, Nucl. Phys. B 529 (1998) 424 [Erratum ibid. B 803 (2008) 234] [hep-ph/9801375] [INSPIRE].

  99. CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].

    ADS  Google Scholar 

  100. D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].

    ADS  Google Scholar 

  101. CDF Collaboration, T. Aaltonen et al., Study of the Top Quark Production Asymmetry and Its Mass and Rapidity Dependence in the Full Run II Tevatron Dataset, CDF-NOTE-10807.

  102. W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].

    ADS  Google Scholar 

  103. W. Bernreuther and Z.-G. Si, Top quark and leptonic charge asymmetries for the Tevatron and LHC, Phys. Rev. D 86 (2012) 034026 [arXiv:1205.6580] [INSPIRE].

    ADS  Google Scholar 

  104. F. Halzen, P. Hoyer and C. Kim, Forward-backward asymmetry of hadroproduced heavy quarks in QCD, Phys. Lett. B 195 (1987) 74 [INSPIRE].

    Article  ADS  Google Scholar 

  105. J.H. Kühn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].

    ADS  Google Scholar 

  106. O. Antunano, J.H. Kühn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].

    ADS  Google Scholar 

  107. ATLAS Collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, CONF-2011-106.

  108. CMS collaboration, Measurement of the charge asymmetry in top quark pair production with the CMS experiment, PAS-TOP-10-010.

  109. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  110. ATLAS Collaboration, ATLAS Sensitivity to the Standard Model Higgs in the HW and HZ Channels at High Transverse Momenta, PHYS-PUB-2009-088 (2009).

  111. A. Kharchilava, Top mass determination in leptonic final states with J/ψ, Phys. Lett. B 476 (2000) 73 [hep-ph/9912320] [INSPIRE].

    Article  ADS  Google Scholar 

  112. S. Biswas, K. Melnikov and M. Schulze, Next-to-leading order QCD effects and the top quark mass measurements at the LHC, JHEP 08 (2010) 048 [arXiv:1006.0910] [INSPIRE].

    ADS  Google Scholar 

  113. M. Worek, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kallweit.

Additional information

ArXiv ePrint: 1207.5018

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denner, A., Dittmaier, S., Kallweit, S. et al. NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders. J. High Energ. Phys. 2012, 110 (2012). https://doi.org/10.1007/JHEP10(2012)110

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)110

Keywords

Navigation