Skip to main content
Log in

Integrable Wilson loops

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The generalized quark-antiquark potential of \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory on \( {{\mathbb{S}}^3}\times \mathbb{R} \) calculates the potential between a pair of heavy charged particles separated by an arbitrary angle on \( {{\mathbb{S}}^3} \) and also an angle in flavor space. It can be calculated by a Wilson loop following a prescribed path and couplings, or after a conformal transformation, by a cusped Wilson loop in flat space, hence also generalizing the usual concept of the cusp anomalous dimension. In \( \mathbb{A}\mathrm{d}{{\mathrm{S}}_5}\times {{\mathbb{S}}^5} \) this is calculated by an infinite open string. I present here an open spin-chain model which calculates the spectrum of excitations of such open strings. In the dual gauge theory these are cusped Wilson loops with extra operator insertions at the cusp. The boundaries of the spin-chain introduce a non-trivial reflection phase and break the bulk symmetry down to a single copy of \( \mathfrak{p}\mathfrak{s}\mathfrak{u}\left( {\left. 2 \right|2} \right) \). The dependence on the two angles is captured by the two embeddings of this algebra into \( \mathfrak{p}\mathfrak{s}\mathfrak{u}{{\left( {\left. 2 \right|2} \right)}^2} \), i.e., by a global rotation. The exact answer to this problem is conjectured to be given by solutions to a set of twisted boundary thermodynamic Bethe ansatz integral equations. In particular the generalized quark-antiquark potential or cusp anomalous dimension is recovered by calculating the ground state energy of the minimal length spin-chain, with no sites. It gets contributions only from virtual particles reflecting off the boundaries. I reproduce from this calculation some known weak coupling perturtbative results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    ADS  Google Scholar 

  2. G.P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov evolution kernels of parton distributions, Mod. Phys. Lett. A 4 (1989) 1257 [INSPIRE].

    Article  ADS  Google Scholar 

  3. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP 06 (2011) 131 [arXiv:1105.5144] [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Correa, J. Henn, J.M. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Correa, J. Henn, J.M. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in \( \mathcal{N}=4 \) super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. K. Zarembo, Supersymmetric Wilson loops, Nucl. Phys. B 643 (2002) 157 [hep-th/0205160] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R.A. Brandt, F. Neri and M. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Google Scholar 

  12. Y. Makeenko and A.A. Migdal, Exact equation for the loop average in multicolor QCD, Phys. Lett. B 88 (1979) 135 [Erratum ibid. B 89 (1980) 437] [INSPIRE].

  13. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. N. Drukker, S. Giombi, R. Ricci and D. Trancanelli, Supersymmetric Wilson loops on S 3, JHEP 05 (2008) 017 [arXiv:0711.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdS 5 × S 5 : semiclassical partition function, JHEP 04 (2000) 021 [hep-th/0001204] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. S.-x. Chu, D. Hou and H.-c. Ren, The subleading term of the strong coupling expansion of the heavy-quark potential in a N = 4 super Yang-Mills vacuum, JHEP 08 (2009) 004 [arXiv:0905.1874] [INSPIRE].

  20. V. Forini, Quark-antiquark potential in AdS at one loop, JHEP 11 (2010) 079 [arXiv:1009.3939] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Drukker and B. Fiol, On the integrability of Wilson loops in AdS 5 × S 5 : some periodic ansatze, JHEP 01 (2006) 056 [hep-th/0506058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. D. Correa, J.M. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Minahan and K. Zarembo, The Bethe ansatz for \( \mathcal{N}=4 \) super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from \( \mathcal{N}=4 \) super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. D.E. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP 06 (2005) 059 [hep-th/0501078] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. N. Mann and S.E. Vazquez, Classical open string integrability, JHEP 04 (2007) 065 [hep-th/0612038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063 [arXiv:0708.2272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP 04 (2004) 035 [hep-th/0401041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. D. Correa and C. Young, Reflecting magnons from D7 and D5 branes, J. Phys. A 41 (2008) 455401 [arXiv:0808.0452] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. D.H. Correa, V. Regelskis and C.A. Young, Integrable achiral D5-brane reflections and asymptotic Bethe equations, J. Phys. A 44 (2011) 325403 [arXiv:1105.3707] [INSPIRE].

    MathSciNet  Google Scholar 

  32. D. Gaiotto and J.M. Maldacena, unpublished.

  33. A. Dekel and Y. Oz, Integrability of Green-Schwarz σ-models with boundaries, JHEP 08 (2011) 004 [arXiv:1106.3446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. Z. Bajnok and R.A. Janik, Four-loop perturbative Konishi from strings and finite size effects for multiparticle states, Nucl. Phys. B 807 (2009) 625 [arXiv:0807.0399] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys. B 748 (2006) 170 [hep-th/0602100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    Article  ADS  Google Scholar 

  38. A.V. Kotikov, L.N. Lipatov and V.N. Velizhanin, Anomalous dimensions of Wilson operators in \( \mathcal{N}=4 \) SYM theory, Phys. Lett. B 557 (2003) 114 [hep-ph/0301021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. N. Beisert, The dilatation operator of \( \mathcal{N}=4 \) super Yang-Mills theory and integrability, Phys. Rept. 405 (2004) 1 [hep-th/0407277] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. C. Ahn, D. Bak and S.-J. Rey, Reflecting magnon bound states, JHEP 04 (2008) 050 [arXiv:0712.4144] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Volin, Minimal solution of the AdS/CFT crossing equation, J. Phys. A 42 (2009) 372001 [arXiv:0904.4929] [INSPIRE].

    MathSciNet  Google Scholar 

  43. G. Arutyunov, S. Frolov and M. Staudacher, Bethe ansatz for quantum strings, JHEP 10 (2004) 016 [hep-th/0406256] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. O. Aharony and D. Kutasov, Holographic duals of long open strings, Phys. Rev. D 78 (2008) 026005 [arXiv:0803.3547] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. N. Beisert and R. Roiban, Beauty and the twist: the Bethe ansatz for twisted \( \mathcal{N}=4 \) SYM, JHEP 08 (2005) 039 [hep-th/0505187] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, Finite-size effect for four-loop Konishi of the β-deformed \( \mathcal{N}=4 \) SYM, Phys. Lett. B 693 (2010) 380 [arXiv:1006.2209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. N. Gromov and F. Levkovich-Maslyuk, Y-system and β-deformed \( \mathcal{N}=4 \) super-Yang-Mills, J. Phys. A 44 (2011) 015402 [arXiv:1006.5438] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. G. Arutyunov, M. de Leeuw and S.J. van Tongeren, Twisting the mirror TBA, JHEP 02 (2011) 025 [arXiv:1009.4118] [INSPIRE].

    ADS  Google Scholar 

  49. C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, TBA, NLO Lüscher correction and double wrapping in twisted AdS/CFT, JHEP 12 (2011) 059 [arXiv:1108.4914] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. de Leeuw and S.J. van Tongeren, The spectral problem for strings on twisted AdS 5 × S 5, Nucl. Phys. B 860 (2012) 339 [arXiv:1201.1451] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Arutyunov and S. Frolov, On string S-matrix, bound states and TBA, JHEP 12 (2007) 024 [arXiv:0710.1568] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. I. Cherednik, Factorizing particles on a half line and root systems, Theor. Math. Phys. 61 (1984) 977 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988) 2375 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. R. Murgan and R.I. Nepomechie, Open-chain transfer matrices for AdS/CFT, JHEP 09 (2008) 085 [arXiv:0808.2629] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. W. Galleas, The Bethe ansatz equations for reflecting magnons, Nucl. Phys. B 820 (2009) 664 [arXiv:0902.1681] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. D. Correa and C. Young, Finite size corrections for open strings/open chains in planar AdS/CFT, JHEP 08 (2009) 097 [arXiv:0905.1700] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. Z. Bajnok and L. Palla, Boundary finite size corrections for multiparticle states and planar AdS/CFT, JHEP 01 (2011) 011 [arXiv:1010.5617] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Ahn, Z. Bajnok, D. Bombardelli and R.I. Nepomechie, Twisted Bethe equations from a twisted S-matrix, JHEP 02 (2011) 027 [arXiv:1010.3229] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. Z. Bajnok, L. Palla and G. Takács, Finite size effects in quantum field theories with boundary from scattering data, Nucl. Phys. B 716 (2005) 519 [hep-th/0412192] [INSPIRE].

    Article  ADS  Google Scholar 

  60. Z. Bajnok, L. Palla and G. Takács, Boundary one-point function, Casimir energy and boundary state formalism in D+1 dimensional QFT, Nucl. Phys. B 772 (2007) 290 [hep-th/0611176] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. LeClair, G. Mussardo, H. Saleur and S. Skorik, Boundary energy and boundary states in integrable quantum field theories, Nucl. Phys. B 453 (1995) 581 [hep-th/9503227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. A.B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee-Yang models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. P. Dorey, M. Pillin, R. Tateo and G. Watts, One point functions in perturbed boundary conformal field theories, Nucl. Phys. B 594 (2001) 625 [hep-th/0007077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. S. Ghoshal and A.B. Zamolodchikov, Boundary S matrix and boundary state in two-dimensional integrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841 [Erratum ibid. A 9 (1994) 4353] [hep-th/9306002] [INSPIRE].

  65. D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe ansatz for planar AdS/CFT: a proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact spectrum of anomalous dimensions of planar \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. G. Arutyunov and S. Frolov, Thermodynamic Bethe ansatz for the AdS 5 × S 5 mirror model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. G. Arutyunov, S. Frolov and R. Suzuki, Exploring the mirror TBA, JHEP 05 (2010) 031 [arXiv:0911.2224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. N. Gromov, V. Kazakov and P. Vieira, Exact spectrum of anomalous dimensions of planar \( \mathcal{N}=4 \) supersymmetric Yang-Mills theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [INSPIRE].

  71. B. Basso, G. Korchemsky and J. Kotanski, Cusp anomalous dimension in maximally supersymmetric Yang-Mills theory at strong coupling, Phys. Rev. Lett. 100 (2008) 091601 [arXiv:0708.3933] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of \( \mathcal{N}=4 \) super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in \( \mathcal{N}=4 \) SYM: exponentiation and Regge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. L.F. Alday, D. Gaiotto, J.M. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. D. Gaiotto, J.M. Maldacena, A. Sever and P. Vieira, Bootstrapping null polygon Wilson loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. B. Basso, Exciting the GKP string at any coupling, Nucl. Phys. B 857 (2012) 254 [arXiv:1010.5237] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. B. Basso, An exact slope for AdS/CFT, arXiv:1109.3154 [INSPIRE].

  78. N. Gromov, Y-system and quasi-classical strings, JHEP 01 (2010) 112 [arXiv:0910.3608] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. O. Aharony, O. Bergman, D.L. Jafferis and J.M. Maldacena, \( \mathcal{N}=6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. N. Drukker and D. Trancanelli, A supermatrix model for \( \mathcal{N}=6 \) super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  82. N. Beisert, The analytic Bethe ansatz for a chain with centrally extended su(2|2) symmetry, J. Stat. Mech. (2007) P01017 [nlin/0610017] [INSPIRE].

  83. N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. P. Vieira and D. Volin, Review of AdS/CFT integrability, chapter III.3: the dressing factor, Lett. Math. Phys. 99 (2012) 231 [arXiv:1012.3992] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadav Drukker.

Additional information

ArXiv ePrint: 1203.1617

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drukker, N. Integrable Wilson loops. J. High Energ. Phys. 2013, 135 (2013). https://doi.org/10.1007/JHEP10(2013)135

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)135

Keywords

Navigation