Skip to main content
Log in

Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the low energy behaviour of \( \mathcal{N}=\left( {2,2} \right) \) supersymmetric gauge theories in 1 + 1 dimensions, with orthogonal and symplectic gauge groups and matters in the fundamental representation. We observe supersymmetry breaking in super-Yang-Mills theory and in theories with small numbers of flavors. For larger numbers of flavors, we discover duality between regular theories with different gauge groups and matter contents, where regularity refers to absence of quantum Coulomb branch. The result is applied to study families of superconformal field theories that can be used for superstring compactifications, with corners corresponding to three-dimensional Calabi-Yau manifolds. This work is motivated by recent development in mathematics concerning equivalences of derived categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Hori and D. Tong, Aspects of non-Abelian gauge dynamics in two-dimensional N = (2, 2) theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Witten, θ Vacua in Two-dimensional Quantum Chromodynamics, Nuovo Cim. A 51 (1979) 325 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Supersymmetric QCD, Nucl. Phys. B 241 (1984) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Seiberg, Exact results on the space of vacua of four-dimensional SUSY gauge theories, Phys. Rev. D 49 (1994) 6857 [hep-th/9402044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. K.A. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N(c)) gauge theories, Nucl. Phys. B 444 (1995) 125 [hep-th/9503179] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. K.A. Intriligator and P. Pouliot, Exact superpotentials, quantum vacua and duality in supersymmetric SP(N(c)) gauge theories, Phys. Lett. B 353 (1995) 471 [hep-th/9505006] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2+1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Karch, Seiberg duality in three-dimensions, Phys. Lett. B 405 (1997) 79 [hep-th/9703172] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [INSPIRE].

  15. A. Bondal and D. Orlov, Derived categories of coherent sheaves, Proceedings ICM. Vol. II, Beijing China (2002), Higher Education Press, Beijing China (2002), pg. 47 [math/0206295].

  16. S. Hosono and H. Takagi, Mirror symmetry and projective geometry of Reye congruences I, arXiv:1101.2746 [INSPIRE].

  17. E.A. Rødland, The Pfaffian Calabi-Yau, its Mirror and their link to the Grassmannian G(2, 7), Compositio Math. 122 (2000) 135 [math/9801092].

  18. N. Seiberg, IR dynamics on branes and space-time geometry, Phys. Lett. B 384 (1996) 81 [hep-th/9606017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  20. E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].

    ADS  Google Scholar 

  21. M. Reid, The complete intersection of two or more quadrics, Ph.D. Thesis, Trinity College, Cambridge U.K. (1972).

  22. A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, alg-geom/9506012.

  23. A. Kuznetsov, Derived Categories of Quadric Fibrations and Intersections of Quadrics, math/510670.

  24. L.J. Dixon, P.H. Ginsparg and J.A. Harvey, \( \widehat{c}=1 \) superconformal field theory, Nucl. Phys. B 306 (1988) 470 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. K.A. Intriligator and C. Vafa, Landau-Ginzburg orbifolds, Nucl. Phys. B 339 (1990) 95 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Hanany and K. Hori, Branes and N = 2 theories in two-dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. P.H. Ginsparg, Applied conformal field theory, hep-th/9108028 [INSPIRE].

  28. A. Caldararu, J. Distler, S. Hellerman, T. Pantev and E. Sharpe, Non-birational twisted derived equivalences in abelian GLSMs, Commun. Math. Phys. 294 (2010) 605 [arXiv:0709.3855] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. A. Givental, Homological geometry and mirror symmetry, Proceedings of ICM 1994, Zürich Switzerland (1994), Birkhäuser, Basel Switzerland (1995), pg. 472.

  30. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE].

  31. S.R. Coleman, More About the Massive Schwinger Model, Annals Phys. 101 (1976) 239 [INSPIRE].

    Article  ADS  Google Scholar 

  32. H. Weyl, The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton U.K. (1939).

    Google Scholar 

  33. E. Witten, On the conformal field theory of the Higgs branch, JHEP 07 (1997) 003 [hep-th/9707093] [INSPIRE].

    Article  ADS  Google Scholar 

  34. O. Aharony and M. Berkooz, IR dynamics of D = 2, N = (4, 4) gauge theories and DLCQ oflittle string theories’, JHEP 10 (1999) 030 [hep-th/9909101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. E. Witten, The Verlinde algebra and the cohomology of the Grassmannian, hep-th/9312104 [INSPIRE].

  36. E. Witten, On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A 9 (1994) 4783 [hep-th/9304026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Silverstein and E. Witten, Global U(1) R symmetry and conformal invariance of (0, 2) models, Phys. Lett. B 328 (1994) 307 [hep-th/9403054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. K. Hori and A. Kapustin, Duality of the fermionic 2 − D black hole and N = 2 Liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. M. Krawitz, FJRW rings and Landau-Ginzburg Mirror Symmetry, Ph.D. Thesis, University of Michigan, Ann Arbor U.S.A. (2010).

  41. M. Herbst, K. Hori and D. Page, Phases Of N = 2 Theories In 1 + 1 Dimensions With Boundary, arXiv:0803.2045 [INSPIRE].

  42. L. Borisov and A. Caldararu, The Pfaffian-Grassmannian derived equivalence, J. Alg. Geom. 18 (2009) 201 [math/0608404].

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Kuznetsov, Homological projective duality for Grassmannians of lines, math/0610957.

  44. A. Kuznetsov, Homological Projective Duality, Publ. Math. Inst. Hautes Études Sci. 105 (2007) 157 [math/0507292].

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Hori.

Additional information

ArXiv ePrint: 1104.2853

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, K. Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories. J. High Energ. Phys. 2013, 121 (2013). https://doi.org/10.1007/JHEP10(2013)121

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)121

Keywords

Navigation