Skip to main content
Log in

Singlet neighbors of the Higgs boson

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The newly discovered resonance at 125 GeV has properties consistent with the Standard Model (SM) Higgs particle, although some production and/or decay channels currently exhibit O(1) deviations. We consider scenarios with a new scalar singlet field with couplings to electrically charged vector-like matter, focusing particularly on the case when the singlet mass lies within a narrow ~ few GeV window around the Higgs mass. Such a ‘singlet neighbor’ presents novel mechanisms for modifying the observed properties of the Higgs boson. For instance, even a small amount of the Higgs-singlet mixing can lead to a significant enhancement of the apparent diphoton rate. Alternatively, the Higgs may decay into the nearby singlet, along with a very light, very soft mediator particle, in which case there can be O(1) enhancement to the apparent diphoton rate even for ~ TeV-scale charged vector-like matter. We also explore models in which vector-like fermions mix with the SM leptons, causing the simultaneous enhancement of γγ and suppression of \( \tau \overline{\tau } \) Higgs branching ratios. Our scenario can be tested with the accumulating LHC data by probing for the di-resonance structure of the 125 GeV diphoton signal, as well as the relative shift in the resonance location between the diphoton and four-lepton modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  2. J. Incandela, Update on the Higgs boson searches at the LHC, CERN Seminar, July 4, 2012 http://cdsweb.cern.ch/record/1459513 (2012).

  3. CDF and D0 collaborations, S.Z. Shalhout, Higgs - Tevatron, talk at the ICHEP2012, Melbourne Australia, July 9, 2012 (2012).

  4. M.E. Peskin, Comparison of LHC and ILC capabilities for Higgs boson coupling measurements, arXiv:1207.2516 [INSPIRE].

  5. J.F. Gunion, S. Dawson, H.E. Haber and G.L. Kane, The Higgs hunters guide, Addison-Wesley, Reading U.S.A. (1990).

    Google Scholar 

  6. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Cheung and T.-C. Yuan, Could the excess seen at 124126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  9. Z. Kang, J. Li and T. Li, On naturalness of the (N)MSSM, arXiv:1201.5305 [INSPIRE].

  10. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.J. Heckman, P. Kumar and B. Wecht, The Higgs as a probe of supersymmetric extra sectors, JHEP 07 (2012) 118 [arXiv:1204.3640] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Azatov, R. Contino, D. Del Re, J. Galloway, M. Grassi and S. Rahatlou, Determining Higgs couplings with a model-independent analysis of Hγγ, JHEP 06 (2012) 134 [arXiv:1204.4817] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Cohen, D.E. Morrissey and A. Pierce, Electroweak baryogenesis and Higgs signatures, Phys. Rev. D 86 (2012) 013009 [arXiv:1203.2924] [INSPIRE].

    ADS  Google Scholar 

  14. L. Wang and X.-F. Han, The recent Higgs boson data and Higgs triplet model with vector-like quark, arXiv:1206.1673 [INSPIRE].

  15. K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, arXiv:1206.5303 [INSPIRE].

  16. A. Arhrib, R. Benbrik and C.-H. Chen, Hγγ in the complex two Higgs doublet model, arXiv:1205.5536 [INSPIRE].

  17. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Akeroyd and S. Moretti, Enhancement of H to γγ from doubly charged scalars in the Higgs triplet model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].

    ADS  Google Scholar 

  19. M. Carena, I. Low and C.E. Wagner, Implications of a modified Higgs to diphoton decay width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, arXiv:1206.5001 [INSPIRE].

  21. W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on new scalars from the LHC 125 GeV Higgs signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].

    ADS  Google Scholar 

  22. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing various models of the 125 GeV boson in vector boson fusion, arXiv:1206.5853 [INSPIRE].

  23. S. Chang, C.A. Newby, N. Raj and C. Wanotayaroj, Revisiting theories with enhanced Higgs couplings to weak gauge bosons, arXiv:1207.0493 [INSPIRE].

  24. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, arXiv:1207.1716 [INSPIRE].

  25. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1) PQ -extended MSSM, arXiv:1207.2473 [INSPIRE].

  26. N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, arXiv:1207.4835 [INSPIRE].

  27. L.G. Almeida, E. Bertuzzo, P.A. Machado and R.Z. Funchal, Does Hγγ taste like vanilla new physics?, arXiv:1207.5254 [INSPIRE].

  28. P. Draper and D. McKeen, Diphotons from tetraphotons in the decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].

    ADS  Google Scholar 

  29. C. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? what to do if you discover a new scalar particle, Int. J. Mod. Phys. A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].

    ADS  Google Scholar 

  30. A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].

    ADS  Google Scholar 

  31. S. Chang, R. Dermisek, J.F. Gunion and N. Weiner, Nonstandard Higgs boson decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 [arXiv:0801.4554] [INSPIRE].

    Article  ADS  Google Scholar 

  32. I. Low and J. Lykken, Revealing the electroweak properties of a new scalar resonance, JHEP 10 (2010) 053 [arXiv:1005.0872] [INSPIRE].

    Article  ADS  Google Scholar 

  33. C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].

    ADS  Google Scholar 

  34. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for invisible Higgs decays with global fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Branco, P. Ferreira, L. Lavoura, M. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  40. V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. T. Binoth and J. van der Bij, Influence of strongly coupled, hidden scalars on Higgs signals, Z. Phys. C 75 (1997) 17 [hep-ph/9608245] [INSPIRE].

    Google Scholar 

  42. J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].

    ADS  Google Scholar 

  43. C. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev. D 75 (2007) 037701 [hep-ph/0611014] [INSPIRE].

    ADS  Google Scholar 

  45. V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [INSPIRE].

    ADS  Google Scholar 

  46. P.J. Fox, D. Tucker-Smith and N. Weiner, Higgs friends and counterfeits at hadron colliders, JHEP 06 (2011) 127 [arXiv:1104.5450] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R. Sato, S. Shirai and T.T. Yanagida, A scalar boson as a messenger of new physics, Phys. Lett. B 704 (2011) 490 [arXiv:1105.0399] [INSPIRE].

    ADS  Google Scholar 

  48. I. Low, J. Lykken and G. Shaughnessy, Singlet scalars as Higgs imposters at the large hadron collider, Phys. Rev. D 84 (2011) 035027 [arXiv:1105.4587] [INSPIRE].

    ADS  Google Scholar 

  49. I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, arXiv:1207.1093 [INSPIRE].

  50. D. Bertolini and M. McCullough, The social Higgs, arXiv:1207.4209 [INSPIRE].

  51. J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, arXiv:1207.1545 [INSPIRE].

  52. J.M. Cline, 130 GeV dark matter and the Fermi gamma-ray line, Phys. Rev. D 86 (2012) 015016 [arXiv:1205.2688] [INSPIRE].

    ADS  Google Scholar 

  53. B.A. Dobrescu, G.L. Landsberg and K.T. Matchev, Higgs boson decays to CP odd scalars at the Tevatron and beyond, Phys. Rev. D 63 (2001) 075003 [hep-ph/0005308] [INSPIRE].

    ADS  Google Scholar 

  54. ATLAS collaboration, Search for a Higgs boson decaying to four photons through light CP-odd scalar coupling using lumifull of 7 TeV pp collision data taken with ATLAS detector at the LHC, ATLAS-CONF-2012-079 (2012).

  55. C. Englert, M. Spannowsky and C. Wymant, Partially (in)visible Higgs decays at the LHC, arXiv:1209.0494 [INSPIRE].

  56. C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in Bs transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C. Bird, R.V. Kowalewski and M. Pospelov, Dark matter pair-production in Bs transitions, Mod. Phys. Lett. A 21 (2006) 457 [hep-ph/0601090] [INSPIRE].

    ADS  Google Scholar 

  58. BaBar collaboration, J. Lees et al., Observation of the rare decay B +K + π 0 π 0 and measurement of the quasi-two body contributions B +K *(892)+ π 0, B +f 0(980)K + and B +χ c0 K +, Phys. Rev. D 84 (2011) 092007 [arXiv:1109.0143] [INSPIRE].

    ADS  Google Scholar 

  59. E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the large hadron collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  61. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, arXiv:1206.3360 [INSPIRE].

  62. A. Joglekar, P. Schwaller and C.E. Wagner, Dark matter and enhanced Higgs to di-photon rate from vector-like leptons, arXiv:1207.4235 [INSPIRE].

  63. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  64. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  65. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  66. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].

    ADS  Google Scholar 

  67. D. Choudhury, T.M. Tait and C. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].

    ADS  Google Scholar 

  68. ATLAS collaboration, Search for direct slepton and gaugino production in final states with two leptons and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, ATLAS-CONF-2012-076 (2012).

  69. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  70. N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].

  71. L.M. Carpenter, A. Rajaraman and D. Whiteson, Searches for fourth generation charged leptons, arXiv:1010.1011 [INSPIRE].

  72. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Conway et al., PGS4, http://physics.ucdavis.edu/~conway/research/software/pgs/pgs4-general.htm.

  74. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment - Detector, trigger and physics, arXiv:0901.0512 [INSPIRE].

  75. CMS collaboration, G. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Batell.

Additional information

ArXiv ePrint: 1207.6252

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batell, B., McKeen, D. & Pospelov, M. Singlet neighbors of the Higgs boson. J. High Energ. Phys. 2012, 104 (2012). https://doi.org/10.1007/JHEP10(2012)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)104

Keywords

Navigation