Skip to main content
Log in

On duality symmetry in perturbative quantum theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Non-compact symmetries of extended 4d supergravities involve duality rotations of vectors and thus are not manifest off-shell invariances in standard “second-order” formulation. To study how such symmetries are realised in the quantum theory we consider examples in 2 dimensions where vector-vector duality is replaced by scalar-scalar one. Using “doubled” formulation, where fields and their momenta are treated on an equal footing and the duality becomes a manifest symmetry of the action (at the expense of the Lorentz symmetry), we argue that the corresponding on-shell quantum effective action or S-matrix are duality symmetric as well as Lorentz invariant. The simplest case of discrete Z 2 duality corresponds to a symmetry of the S-matrix under flipping the sign of the negative-chirality scalars in 2 dimensions or phase rotations of chiral (definite-helicity) parts of vectors in 4 dimensions. We also briefly discuss some 4d vector models and comment on implications of our analysis for extended supergravities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cremmer and B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Cremmer, J. Scherk and S. Ferrara, SU(4) invariant supergravity theory, Phys. Lett. B 74 (1978) 61 [INSPIRE].

    Article  ADS  Google Scholar 

  3. B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Marcus, Composite anomalies in supergravity, Phys. Lett. B 157 (1985) 383 [INSPIRE].

    Article  ADS  Google Scholar 

  5. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. G. Bossard, C. Hillmann and H. Nicolai, E 7(7) symmetry in perturbatively quantised N = 8 supergravity, JHEP 12 (2010) 052 [arXiv:1007.5472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Bossard, P. Howe and K. Stelle, On duality symmetries of supergravity invariants, JHEP 01 (2011) 020 [arXiv:1009.0743] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Beisert et al., E 7(7) constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2010) 265 [arXiv:1009.1643] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. R. Kallosh, E 7(7) symmetry and finiteness of N = 8 supergravity, JHEP 03 (2012) 083 [arXiv:1103.4115] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. R. Kallosh, N = 8 counterterms and E 7(7) current conservation, JHEP 06 (2011) 073 [arXiv:1104.5480] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Kallosh, On absence of 3-loop divergence in N = 4 supergravity, Phys. Rev. D 85 (2012) 081702 [arXiv:1202.4690] [INSPIRE].

    ADS  Google Scholar 

  13. P. di Vecchia, S. Ferrara and L. Girardello, Anomalies of hidden local chiral symmetries in σ-models and extended supergravities, Phys. Lett. B 151 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  14. B. de Wit and M.T. Grisaru, Compensating fields and anomalies, in Quantum field theory and quantum statistics, volume 2, I.A. Batalin et al. eds., Taylor & Francis, U.K. (1987), pg. 411 [INSPIRE].

  15. S. Deser, M.T. Grisaru, P. van Nieuwenhuizen and C. Wu, Scale dependence and the renormalization problem of quantum gravity, Phys. Lett. B 58 (1975) 355 [INSPIRE].

    Article  ADS  Google Scholar 

  16. P. van Nieuwenhuizen and J. Vermaseren, One loop divergences in the quantum theory of supergravity, Phys. Lett. B 65 (1976) 263 [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.K. Gaillard and B. Zumino, Duality rotations for interacting fields, Nucl. Phys. B 193 (1981) 221 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Deser and C. Teitelboim, Duality transformations of Abelian and non-Abelian gauge fields, Phys. Rev. D 13 (1976) 1592 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. S. Deser, A comment on electromagnetic duality invariance, Brandeis preprint Print-81-0755, published as Off-shell duality invariance, J. Phys. A 15 (1982) 1053 [INSPIRE].

  20. E. Fradkin and A.A. Tseytlin, Quantum equivalence of dual field theories, Annals Phys. 162 (1985) 31 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Bossard and H. Nicolai, Counterterms vs. dualities, JHEP 08 (2011) 074 [arXiv:1105.1273] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. J.J.M. Carrasco, R. Kallosh and R. Roiban, Covariant procedures for perturbative non-linear deformation of duality-invariant theories, Phys. Rev. D 85 (2012) 025007 [arXiv:1108.4390] [INSPIRE].

    ADS  Google Scholar 

  23. J. Broedel, J.J.M. Carrasco, S. Ferrara, R. Kallosh and R. Roiban, N = 2 supersymmetry and U(1)-duality, Phys. Rev. D 85 (2012) 125036 [arXiv:1202.0014] [INSPIRE].

    ADS  Google Scholar 

  24. W. Chemissany, R. Kallosh and T. Ortín, Born-Infeld with higher derivatives, Phys. Rev. D 85 (2012) 046002 [arXiv:1112.0332] [INSPIRE].

    ADS  Google Scholar 

  25. S.M. Kuzenko and S. Theisen, Supersymmetric duality rotations, JHEP 03 (2000) 034 [hep-th/0001068] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.M. Kuzenko and S. Theisen, Nonlinear selfduality and supersymmetry, Fortsch. Phys. 49 (2001) 273 [hep-th/0007231] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. R. Floreanini and R. Jackiw, Selfdual fields as charge density solitons, Phys. Rev. Lett. 59 (1987) 1873 [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Henneaux and C. Teitelboim, Dynamics of chiral (selfdual) P-forms, Phys. Lett. B 206 (1988) 650 [INSPIRE].

    Article  ADS  Google Scholar 

  29. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Hillmann, E 7(7) invariant Lagrangian of D = 4 N = 8 supergravity, JHEP 04 (2010) 010 [arXiv:0911.5225] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. S. Cecotti, S. Ferrara and L. Girardello, Hidden noncompact symmetries in string theory, Nucl. Phys. B 308 (1988) 436 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. A.A. Tseytlin and P.C. West, Two remarks on chiral scalars, Phys. Rev. Lett. 65 (1990) 541 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. T. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys. B 399 (1993) 691 [hep-th/9210015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. R. Kallosh and A.A. Tseytlin, Simplifying superstring action on AdS 5 × S 5, JHEP 10 (1998) 016 [hep-th/9808088] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and integrability for strings on AdS backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. N. Berkovits and J. Maldacena, Fermionic T-duality, dual superconformal symmetry and the amplitude/Wilson loop connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual superconformal symmetry from AdS 5 × S 5 superstring integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. A. Jevicki and C.-K. Lee, The S matrix generating functional and effective action, Phys. Rev. D 37 (1988) 1485 [INSPIRE].

    ADS  Google Scholar 

  43. A.A. Tseytlin, Selfduality of Born-Infeld action and Dirichlet three-brane of type IIB superstring theory, Nucl. Phys. B 469 (1996) 51 [hep-th/9602064] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232] [INSPIRE].

    ADS  Google Scholar 

  45. A.A. Tseytlin, Duality and dilaton, Mod. Phys. Lett. A 6 (1991) 1721 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M.T. Grisaru and H. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Duff and C. Isham, Selfduality, helicity, and supersymmetry: the scattering of light by light, Phys. Lett. B 86 (1979) 157 [INSPIRE].

    Article  ADS  Google Scholar 

  48. A. Rosly and K. Selivanov, Helicity conservation in Born-Infeld theory, hep-th/0204229 [INSPIRE].

  49. R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. S. Deser and R. Puzalowski, Supersymmetric nonpolynomial vector multiplets and causal propagation, J. Phys. A 13 (1980) 2501 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. S. Cecotti and S. Ferrara, Supersymmetric Born-Infeld Lagrangians, Phys. Lett. B 187 (1987) 335 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. M.R. Garousi, S-duality of S-matrix, JHEP 11 (2011) 016 [arXiv:1106.1714] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. M.R. Garousi, On S-duality of D 3 -brane S-matrix, Phys. Rev. D 84 (2011) 126019 [arXiv:1108.4782] [INSPIRE].

    ADS  Google Scholar 

  54. M. Günaydin and N. Marcus, The unitary supermultiplet of N = 8 conformal superalgebra involving fields of spin ≤ 2, Class. Quant. Grav. 2 (1985) L19 [INSPIRE].

    Article  MATH  Google Scholar 

  55. C. Hull, New gauged N = 8, D = 4 supergravities, Class. Quant. Grav. 20 (2003) 5407 [hep-th/0204156] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. M. Günaydin and O. Pavlyk, Quasiconformal realizations of E 6(6) , E 7(7) , E 8(8) and SO(n + 3, m + 3), N ≥ 4 supergravity and spherical vectors, Adv. Theor. Math. Phys. 13 (2009) 1895 [arXiv:0904.0784] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Günaydin, K. Koepsell and H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups, Commun. Math. Phys. 221 (2001) 57 [hep-th/0008063] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. H. Osborn, Local couplings and SL(2, R) invariance for gauge theories at one loop, Phys. Lett. B 561 (2003) 174 [hep-th/0302119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. P.B. Gilkey, K. Kirsten, D. Vassilevich and A. Zelnikov, Duality symmetry of the p form effective action and supertrace of the twisted de Rham complex, Nucl. Phys. B 648 (2003) 542 [hep-th/0209125] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. M. de Roo, Matter coupling in N = 4 supergravity, Nucl. Phys. B 255 (1985) 515 [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. de Roo and P. Wagemans, Gauge matter coupling in N = 4 supergravity, Nucl. Phys. B 262 (1985) 644 [INSPIRE].

    Article  ADS  Google Scholar 

  62. H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  63. E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  64. E. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. M.T. Grisaru, Anomalies, field transformations, and the relation between SU(4) and SO(4) supergravity, Phys. Lett. B 79 (1978) 225 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Roiban.

Additional information

ArXiv ePrint: 1205.0176

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roiban, R., Tseytlin, A.A. On duality symmetry in perturbative quantum theory. J. High Energ. Phys. 2012, 99 (2012). https://doi.org/10.1007/JHEP10(2012)099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)099

Keywords

Navigation