Skip to main content
Log in

The one-loop pentagon to higher orders in ϵ

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the one-loop scalar massless pentagon integral I 6−2ϵ5 in D = 6−2ϵ dimensions in the limit of multi-Regge kinematics. This integral first contributes to the parity-odd part of the one-loop \( \mathcal{N} \) = 4 five-point MHV amplitude m (1)5 at \( \mathcal{O} \)(ϵ). In the high energy limit defined by ss 1, s 2 ≫ −t 1,−t 2, the pentagon integral reduces to double sums or equivalently twofold Mellin-Barnes integrals. By determining the \( \mathcal{O} \)(ϵ) contribution to I 6−2ϵ5 , one therefore gains knowledge of m (1)5 to \( \mathcal{O} \)2) which is necessary for studies of the iterative structure of \( \mathcal{N} \) = 4 SYM amplitudes beyond one-loop. One immediate application is the extraction of the one-loop gluon-production vertex to \( \mathcal{O} \)2) and the iterative construction of the two-loop gluon-production vertex including finite terms which is described in a companion paper [1]. The analytic methods we have used for evaluating the one-loop pentagon integral in the high energy limit may also be applied to the hexagon integral and may ultimately give information on the form of the R (2)6 remainder function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Del Duca, C. Duhr and E.W. Nigel Glover, The five-gluon amplitude in the high-energy limit, JHEP 12 (2009) 023 [arXiv:0905.0100] [SPIRES].

    Article  Google Scholar 

  2. C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [SPIRES].

    Article  ADS  Google Scholar 

  4. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].

  5. L. Magnea and G. Sterman, Analytic continuation of the Sudakov form-factor in QCD, Phys. Rev. D 42 (1990) 4222 [SPIRES].

    ADS  Google Scholar 

  6. G. Sterman and M.E. Tejeda-Yeomans, Multi-loop amplitudes and resummation, Phys. Lett. B 552 (2003) 48 [hep-ph/0210130] [SPIRES].

    ADS  Google Scholar 

  7. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. Z. Bern, M. Czakon, D.A. Kosower, R. Roiban and V.A. Smirnov, Two-loop iteration of five-point N = 4 super-Yang-Mills amplitudes, Phys. Rev. Lett. 97 (2006) 181601 [hep-th/0604074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [SPIRES].

  10. L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. Z. Bern et al., The two-loop six-gluon MHV amplitude in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. F. Cachazo, M. Spradlin and A. Volovich, Leading singularities of the two-loop six-particle MHV amplitude, Phys. Rev. D 78 (2008) 105022 [arXiv:0805.4832] [SPIRES].

    ADS  Google Scholar 

  13. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in N = 4 super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [SPIRES].

    Article  Google Scholar 

  18. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six- gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. C. Anastasiou et al., Two-loop polygon Wilson loops in N = 4 SYM, JHEP 05 (2009) 115 [arXiv:0902.2245] [SPIRES].

    Article  ADS  Google Scholar 

  21. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  23. I.G. Halliday and R.M. Ricotta, Negative dimensional integrals. 1. Feynman graphs, Phys. Lett. B 193 (1987) 241 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. R. M. Ricotta, Negative dimensions in quantum field theory, in J.J. Giambiagi Festschrift, H. Falomir ed. (1990) pg. 350.

  25. E.E. Boos and A.I. Davydychev, A method of evaluating massive Feynman integrals, Theor. Math. Phys. 89 (1991) 1052 [Teor. Mat. Fiz. 89 (1991) 56] [SPIRES].

    Article  MathSciNet  Google Scholar 

  26. A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Research Letters 5 (1998) 497.

    MATH  MathSciNet  Google Scholar 

  27. J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Exton, Multiple hypergeometric functions and applications, Ellis Horwood (1976).

  29. A.P. Prudnikov, Y.A. Brychkov and O. Marichev, Integrals and series, Gordan and Breach (1990).

  30. A. Erdélyi, Higher transcendental functions. Vol. 1 and 2, McGraw-Hill (1954).

  31. P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques, polynômes d’Hermite, Gauthiers-Villars (1926).

  32. U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trócsányi, Analytic integration of real-virtual counterterms in NNLO jet cross sections I, JHEP 09 (2008) 107 [arXiv:0807.0514] [SPIRES].

    Article  ADS  Google Scholar 

  33. N.N. Bogoliubov and D.V. Shirkov, Quantum fields, Benjamin Cummings Pub. Co. (1982).

  34. C. Itzykson and J.B. Zuber, Quantum field theory, McGraw-Hill (1980).

  35. V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts in Modern Physics, Springer (2004).

    MATH  Google Scholar 

  36. V.A. Smirnov, Feynman integral calculus, Springer (2006).

  37. S. Moch and P. Uwer, XSummer: transcendental functions and symbolic summation in form, Comput. Phys. Commun. 174 (2006) 759 [math-ph/0508008] [SPIRES].

    Article  ADS  Google Scholar 

  38. J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multi-scale multi-loop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059v4.

  41. E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. V. Del Duca, C. Duhr and E.W.N. Glover, Iterated amplitudes in the high-energy limit, JHEP 12 (2008) 097 [arXiv:0809.1822] [SPIRES].

    Article  ADS  Google Scholar 

  43. A.I. Davydychev, Recursive algorithm of evaluating vertex type Feynman integrals, J. Phys. A 25 (1992) 5587 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  44. T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Del Duca.

Additional information

ArXiv ePrint: 0905.0097

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Duca, V., Duhr, C., Nigel Glover, E.W. et al. The one-loop pentagon to higher orders in ϵ. J. High Energ. Phys. 2010, 42 (2010). https://doi.org/10.1007/JHEP01(2010)042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)042

Keywords

Navigation