Skip to main content
Log in

Leptons in holographic composite Higgs models with non-abelian discrete symmetries

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study leptons in holographic composite Higgs models, namely in models possibly admitting a weakly coupled description in terms of five-dimensional (5D) theories. We introduce two scenarios leading to Majorana or Dirac neutrinos, based on the non-abelian discrete group S 4 × Z 3 which is responsible for nearly tri-bimaximal lepton mixing. The smallness of neutrino masses is naturally explained and normal/inverted mass ordering can be accommodated. We analyze two specific 5D gauge-Higgs unification models in warped space as concrete examples of our framework. Both models pass the current bounds on Lepton Flavour Violation (LFV) processes. We pay special attention to the effect of so called boundary kinetic terms that are the dominant source of LFV. The model with Majorana neutrinos is compatible with a Kaluza-Klein vector mass scale m KK ≳ 3.5 TeV, which is roughly the lowest scale allowed by electroweak considerations. The model with Dirac neutrinos, although not strongly constrained by LFV processes and data on lepton mixing, suffers from a too large deviation of the neutrino coupling to the Z boson from its Standard Model value, pushing m KK ≳ 10 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [ INSPIRE].

    ADS  Google Scholar 

  2. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [ INSPIRE].

  3. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [ INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [ INSPIRE].

    Article  MathSciNet  Google Scholar 

  8. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [ INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  10. Y. Grossman and M. Neubert, Neutrino masses and mixings in nonfactorizable geometry, Phys. Lett. B 474 (2000) 361 [hep-ph/9912408] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.J. Huber and Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model, Phys. Lett. B 498 (2001) 256 [hep-ph/0010195] [ INSPIRE].

    ADS  Google Scholar 

  13. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [ INSPIRE].

    ADS  Google Scholar 

  14. K. Agashe, G. Perez and A. Soni, B-factory signals for a warped extra dimension, Phys. Rev. Lett. 93 (2004) 201804 [hep-ph/0406101] [ INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [ INSPIRE].

    ADS  Google Scholar 

  16. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [ INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [ INSPIRE].

    ADS  Google Scholar 

  18. P. Harrison and W. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [ INSPIRE].

    ADS  Google Scholar 

  19. Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [ INSPIRE].

    ADS  Google Scholar 

  20. P. Harrison and W. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [ INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. K. Agashe, T. Okui and R. Sundrum, A common origin for neutrino anarchy and charged hierarchies, Phys. Rev. Lett. 102 (2009) 101801 [arXiv:0810.1277] [ INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Agashe, Relaxing constraints from lepton flavor violation in 5D flavorful theories, Phys. Rev. D 80 (2009) 115020 [arXiv:0902.2400] [ INSPIRE].

    ADS  Google Scholar 

  23. A. Fitzpatrick, G. Perez and L. Randall, Flavor from minimal flavor violation & a viable Randall-Sundrum model, arXiv:0710.1869 [ INSPIRE].

  24. G. Perez and L. Randall, Natural neutrino masses and mixings from warped geometry, JHEP 01 (2009) 077 [arXiv:0805.4652] [ INSPIRE].

    Article  ADS  Google Scholar 

  25. M.-C. Chen and H.-B. Yu, Minimal flavor violation in the lepton sector of the Randall-Sundrum model, Phys. Lett. B 672 (2009) 253 [arXiv:0804.2503] [ INSPIRE].

    ADS  Google Scholar 

  26. C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [ INSPIRE].

    Article  ADS  Google Scholar 

  27. F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A 4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [ INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Kadosh and E. Pallante, An A 4 flavor model for quarks and leptons in warped geometry, JHEP 08 (2010) 115 [arXiv:1004.0321] [ INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal neutrino mixing and quark masses from a discrete flavour symmetry, Nucl. Phys. B 775 (2007) 120 [ INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Lam, Symmetry of lepton mixing, Phys. Lett. B 656 (2007) 193 [arXiv:0708.3665] [ INSPIRE].

    ADS  Google Scholar 

  31. C. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [ INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [ INSPIRE].

    ADS  Google Scholar 

  33. C. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [ INSPIRE].

  34. N. Arkani-Hamed, Y. Grossman and M. Schmaltz, Split fermions in extra dimensions and exponentially small cross-sections at future colliders, Phys. Rev. D 61 (2000) 115004 [hep-ph/9909411] [ INSPIRE].

    ADS  Google Scholar 

  35. Y. Grossman and D.J. Robinson, Composite Dirac neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [ INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Fairlie, Higgs’ fields and the determination of the Weinberg angle, Phys. Lett. B 82 (1979) 97 [ INSPIRE].

    ADS  Google Scholar 

  37. D. Fairlie, Two consistent calculations of the Weinberg angle, J. Phys. G 5 (1979) L55 [ INSPIRE].

    ADS  Google Scholar 

  38. N. Manton, A new six-dimensional approach to the Weinberg-Salam model, Nucl. Phys. B 158 (1979) 141 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. P. Forgacs and N. Manton, Space-time symmetries in gauge theories, Commun. Math. Phys. 72 (1980) 15 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. Y. Hosotani, Dynamical mass generation by compact extra dimensions, Phys. Lett. B 126 (1983) 309 [ INSPIRE].

    ADS  Google Scholar 

  41. Y. Hosotani, Dynamical gauge symmetry breaking as the Casimir effect, Phys. Lett. B 129 (1983) 193 [ INSPIRE].

    ADS  Google Scholar 

  42. Y. Hosotani, Dynamics of non-integrable phases and gauge symmetry breaking, Annals Phys. 190 (1989) 233 [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [ INSPIRE].

    Article  ADS  Google Scholar 

  44. G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in flat extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [ INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [ INSPIRE].

    Article  ADS  Google Scholar 

  47. W.-F. Chang and J.N. Ng, Lepton flavor violation in extra dimension models, Phys. Rev. D 71 (2005) 053003 [hep-ph/0501161] [ INSPIRE].

    ADS  Google Scholar 

  48. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [ INSPIRE].

    ADS  Google Scholar 

  49. A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [ INSPIRE].

    ADS  Google Scholar 

  50. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [ INSPIRE].

    ADS  Google Scholar 

  51. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [ INSPIRE].

    Article  ADS  Google Scholar 

  52. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [ INSPIRE].

    ADS  Google Scholar 

  53. M. Carena, A.D. Medina, N.R. Shah and C.E. Wagner, Gauge-Higgs unification, neutrino masses and dark matter in warped extra dimensions, Phys. Rev. D 79 (2009) 096010 [arXiv:0901.0609] [ INSPIRE].

    ADS  Google Scholar 

  54. M.E. Albrecht, M. Blanke, A.J. Buras, B. Duling and K. Gemmler, Electroweak and flavour structure of a warped extra dimension with custodial protection, JHEP 09 (2009) 064 [arXiv:0903.2415] [ INSPIRE].

    Article  ADS  Google Scholar 

  55. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. R. Barbieri, A. Pomarol and R. Rattazzi, Weakly coupled Higgsless theories and precision electroweak tests, Phys. Lett. B 591 (2004) 141 [hep-ph/0310285] [ INSPIRE].

    ADS  Google Scholar 

  57. R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05 (2007) 060 [hep-th/0703287] [ INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. S.J. Huber and Q. Shafi, Seesaw mechanism in warped geometry, Phys. Lett. B 583 (2004) 293 [hep-ph/0309252] [ INSPIRE].

    ADS  Google Scholar 

  60. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [ INSPIRE].

    ADS  Google Scholar 

  61. K. Agashe, A.E. Blechman and F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation, Phys. Rev. D 74 (2006) 053011 [hep-ph/0606021] [ INSPIRE].

    ADS  Google Scholar 

  62. M.S. Carena, A. Delgado, E. Ponton, T.M. Tait and C. Wagner, Warped fermions and precision tests, Phys. Rev. D 71 (2005) 015010 [hep-ph/0410344] [ INSPIRE].

    ADS  Google Scholar 

  63. C. Csáki, Y. Grossman, P. Tanedo and Y. Tsai, Warped penguin diagrams, Phys. Rev. D 83 (2011) 073002 [arXiv:1004.2037] [ INSPIRE].

    ADS  Google Scholar 

  64. MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ + → e + γ, arXiv:1107.5547 [ INSPIRE].

  65. A. Maki, Status of the MEG experiment, AIP Conf. Proc. 981 (2008) 363 [ INSPIRE].

    Article  ADS  Google Scholar 

  66. P. Wintz, Results of the SINDRUM-II experiment, in Proceedings of the 29th International Conference on High-Energy Physics (ICHEP 98), Vancouver Canada, 23–29 Jul. 1998.

  67. T. Schwetz, M. Tortola and J.W. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [ INSPIRE].

    Article  ADS  Google Scholar 

  68. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [ INSPIRE] and 2011 partial update for the 2012 edition available at http://pdg.lbl.gov/.

    ADS  Google Scholar 

  69. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [ INSPIRE].

    Article  ADS  Google Scholar 

  70. MINOS collaboration, L. Whitehead, New results on muon neutrino to electron neutrino oscillations in MINOS, talk given at Joint Experimental-Theoretical Seminar, Fermilab U.S.A., 24 June 2011, http://theory.fnal.gov/jetp; recent results from MINOS available at http://www-numi.fnal.gov/pr_plots/.

  71. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, arXiv:1108.0015 [ INSPIRE].

  72. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, arXiv:1106.6028 [ INSPIRE].

  73. T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, arXiv:1108.1376 [ INSPIRE].

  74. M. Maltoni, Status of neutrino oscillations and sterile neutrinos, talk given at International Europhysics Conference on High Energy Physics, Grenoble France, 22 July 2011, http://eps-hep2011.eu/.

  75. R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [ INSPIRE].

    ADS  Google Scholar 

  76. C. Hagedorn and M. Serone, General lepton mixing in holographic composite Higgs models, in preparation.

  77. J. Lomont, Applications of finite groups, Academic Press, New York U.S.A. (1959).

    MATH  Google Scholar 

  78. C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [ INSPIRE].

    Article  ADS  Google Scholar 

  79. L. Lavoura, General formulae for f 1 → f 2γ , Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [ INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Serone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagedorn, C., Serone, M. Leptons in holographic composite Higgs models with non-abelian discrete symmetries. J. High Energ. Phys. 2011, 83 (2011). https://doi.org/10.1007/JHEP10(2011)083

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)083

Keywords

Navigation