Skip to main content
Log in

The gluonic field of a heavy quark in conformal field theories at strong coupling

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in \( \mathcal{N} = 4 \) super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[F 2 + ] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[F 2 + ])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Jackson, Classical Electrodynamics, second edition, Wiley, New York U.S.A. (1975), pp. 848 [SPIRES].

    MATH  Google Scholar 

  2. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  3. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  ADS  MATH  Google Scholar 

  5. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.G. CallanJr.and A. Guijosa, Undulating strings and gauge theory waves, Nucl. Phys. B 565 (2000) 157 [hep-th/9906153] [SPIRES].

    Article  ADS  Google Scholar 

  7. U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Vacua, Propagators and Holographic Probes in AdS/CFT, JHEP 01 (1999) 002 [hep-th/9812007] [SPIRES].

    Article  ADS  Google Scholar 

  8. L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [SPIRES].

  9. A.W. Peet and J. Polchinski, UV/IR relations in AdS dynamics, Phys. Rev. D 59 (1999) 065011 [hep-th/9809022] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. K. Maeda and T. Okamura, Radiation from an accelerated quark in AdS/CFT, Phys. Rev. D 77 (2008) 126002 [arXiv:0712.4120] [SPIRES].

    ADS  Google Scholar 

  11. M.J. Tannenbaum, Results from RHIC with Implications for LHC, arXiv:1006.5701 [SPIRES].

  12. I.M. Dremin and A.V. Leonidov, The quark-gluon medium, Phys. Usp. 53 (2011) 1123 [arXiv:1006.4603] [SPIRES].

    Article  ADS  Google Scholar 

  13. W.A. Zajc, The Fluid Nature of quark-gluon Plasma, Nucl. Phys. A 805 (2008) 283 [arXiv:0802.3552] [SPIRES].

    Article  ADS  Google Scholar 

  14. B. Müller, From quark-gluon Plasma to the Perfect Liquid, Acta Phys. Polon. B 38 (2007) 3705 [arXiv:0710.3366] [SPIRES].

    Google Scholar 

  15. E. Shuryak, Emerging theory of strongly coupled quark-gluon plasma, hep-ph/0703208 [SPIRES].

  16. D. d’Enterria, Quark-gluon matter, J. Phys. G 34 (2007) S53 [nucl-ex/0611012] [SPIRES].

    Article  ADS  Google Scholar 

  17. C.A. Salgado, Heavy ions theory review, Acta Phys. Polon. B 38 (2007) 975 [hep-ph/0609172] [SPIRES].

    ADS  Google Scholar 

  18. E.V. Shuryak, Strongly coupled quark-gluon plasma: The status report, hep-ph/0608177 [SPIRES].

  19. M.J. Tannenbaum, Recent results in relativistic heavy ion collisions: From ’a new state of matter’ to ’the perfect fluid’, Rept. Prog. Phys. 69 (2006) 2005 [nucl-ex/0603003] [SPIRES].

    Article  ADS  Google Scholar 

  20. B.Müller and J.L. Nagle, Results from the Relativistic Heavy Ion Collider, Ann. Rev. Nucl. Part. Sci. 56 (2006) 93 [nucl-th/0602029] [SPIRES].

    Article  ADS  Google Scholar 

  21. M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30 [nucl-th/0405013] [SPIRES].

    Article  ADS  Google Scholar 

  22. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. J.J. Friess, S.S. Gubser and G. Michalogiorgakis, Dissipation from a heavy quark moving through N = 4 super-Yang-Mills plasma, JHEP 09 (2006) 072 [hep-th/0605292] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. Y.-h. Gao, W.-s. Xu and D.-f. Zeng, W ake of color fileds in charged N = 4 SYM plasmas, hep-th/0606266 [SPIRES].

  26. J.J. Friess, S.S. Gubser, G. Michalogiorgakis and S.S. Pufu, The stress tensor of a quark moving through \( \mathcal{N} = 4 \) thermal plasma, Phys. Rev. D 75 (2007) 106003 [hep-th/0607022] [SPIRES].

    ADS  Google Scholar 

  27. A. Yarom, The high momentum behavior of a quark wake, Phys. Rev. D 75 (2007) 125010 [hep-th/0702164] [SPIRES].

    ADS  Google Scholar 

  28. S.S. Gubser and S.S. Pufu, Master field treatment of metric perturbations sourced by the trailing string, Nucl. Phys. B 790 (2008) 42 [hep-th/0703090] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Yarom, On the energy deposited by a quark moving in an N = 4 SYM plasma, Phys. Rev. D 75 (2007) 105023 [hep-th/0703095] [SPIRES].

    ADS  Google Scholar 

  30. S.S. Gubser, S.S. Pufu and A. Yarom, Energy disturbances due to a moving quark from gauge-string duality, JHEP 09 (2007) 108 [arXiv:0706.0213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. P.M. Chesler and L.G. Yaffe, The wake of a quark moving through a strongly-coupled \( \mathcal{N} = 4 \) supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [SPIRES].

    Article  ADS  Google Scholar 

  32. S.S. Gubser, S.S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [SPIRES].

    Article  ADS  Google Scholar 

  33. S.S. Gubser and A. Yarom, Universality of the diffusion wake in the gauge-string duality, Phys. Rev. D 77 (2008) 066007 [arXiv:0709.1089] [SPIRES].

    ADS  Google Scholar 

  34. S.S. Gubser, S.S. Pufu and A. Yarom, Shock waves from heavy-quark mesons in AdS/CFT, JHEP 07 (2008) 108 [arXiv:0711.1415] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. P.M. Chesler and L.G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [SPIRES].

    ADS  Google Scholar 

  36. J. Noronha, G. Torrieri and M. Gyulassy, Near Zone Navier–Stokes Analysis of Heavy Quark Jet Quenching in an \( \mathcal{N} = 4 \) SYM Plasma, Phys. Rev. C 78 (2008) 024903 [arXiv:0712.1053] [SPIRES].

    ADS  Google Scholar 

  37. S.S. Gubser, S.S. Pufu, F.D. Rocha and A. Yarom, Energy loss in a strongly coupled thermal medium and the gauge-string duality, arXiv:0902.4041 [SPIRES].

  38. C. Athanasiou, P.M. Chesler, H. Liu, D. Nickel and K. Rajagopal, Synchrotron radiation in strongly coupled conformal field theories, Phys. Rev. D 81 (2010) 126001 [arXiv:1001.3880] [SPIRES].

    ADS  Google Scholar 

  39. Y. Hatta, E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, Aspects of the UV/IR correspondence: energy broadening and string fluctuations, JHEP 02 (2011) 065 [arXiv:1011.3763] [SPIRES].

    Article  ADS  Google Scholar 

  40. Y. Hatta, E. Iancu, A.H. Mueller and D.N. Triantafyllopoulos, Radiation by a heavy quark in N = 4 SYM at strong coupling, Nucl. Phys. B 850 (2011) 31 [arXiv:1102.0232] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Mikhailov, Nonlinear waves in AdS/CFT correspondence, hep-th/0305196 [SPIRES].

  42. M. Chernicoff and A. Güijosa, Acceleration, Energy Loss and Screening in Strongly-Coupled Gauge Theories, JHEP 06 (2008) 005 [arXiv:0803.3070] [SPIRES].

    Article  ADS  Google Scholar 

  43. M. Chernicoff, J.A. García and A. Güijosa, Generalized Lorentz-Dirac Equation for a Strongly-Coupled Gauge Theory, Phys. Rev. Lett. 102 (2009) 241601 [arXiv:0903.2047] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Chernicoff, J.A. García and A. Guijosa, A Tail of a Quark in N = 4 SYM, JHEP 09 (2009) 080 [arXiv:0906.1592] [SPIRES].

    Article  ADS  Google Scholar 

  45. J.L. Hovdebo, M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Holographic mesons: Adding flavor to the AdS/CFT duality, Int. J. Mod. Phys. A 20 (2005) 3428 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. B.-W. Xiao, On the exact solution of the accelerating string in AdS 5 space, Phys. Lett. B 665 (2008) 173 [arXiv:0804.1343] [SPIRES].

    Article  ADS  Google Scholar 

  47. A. Paredes, K. Peeters and M. Zamaklar, Temperature versus acceleration: the Unruh effect for holographic models, JHEP 04 (2009) 015 [arXiv:0812.0981] [SPIRES].

    Article  ADS  Google Scholar 

  48. E. Cáceres, M. Chernicoff, A. Güijosa and J.F. Pedraza, Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories, JHEP 06 (2010) 078 [arXiv:1003.5332] [SPIRES].

    Article  ADS  Google Scholar 

  49. T. Hirayama, P.-W. Kao, S. Kawamoto and F.-L. Lin, Unruh Effect and Holography, Nucl. Phys. B 844 (2011) 1 [arXiv:1001.1289] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. K. Ghoroku, M. Ishihara, K. Kubo and T. Taminato, Accelerated Quark and Holography for Confining Gauge theory, Phys. Rev. D 83 (2011) 024020 [arXiv:1010.4396] [SPIRES].

    ADS  Google Scholar 

  51. Y. Hatta, E. Iancu and A.H. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [SPIRES].

    Article  ADS  Google Scholar 

  52. Y. Hatta and T. Matsuo, Jet fragmentation and gauge/string duality, Phys. Lett. B 670 (2008) 150 [arXiv:0804.4733] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. E. Avsar, E. Iancu, L. McLerran and D.N. Triantafyllopoulos, Shockwaves and deep inelastic scattering within the gauge/gravity duality, JHEP 11 (2009) 105 [arXiv:0907.4604] [SPIRES].

    Article  ADS  Google Scholar 

  54. B. Müller, Parton Energy Loss in Strongly Coupled AdS/CFT, Nucl. Phys. A 855 (2011) 74 [arXiv:1010.4258] [SPIRES].

    Article  ADS  Google Scholar 

  55. E. Iancu, Parton branching and medium-induced radiation in a strongly coupled plasma, Nucl. Phys. A 855 (2011) 331 [arXiv:1012.3527] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. V.E. Hubeny, Relativistic Beaming in AdS/CFT, arXiv:1011.1270 [SPIRES].

  57. V.E. Hubeny, Holographic dual of collimated radiation, New J. Phys. 13 (2011) 035006 [arXiv:1012.3561] [SPIRES].

    Article  ADS  Google Scholar 

  58. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. F. Bigazzi et al., D3-D7 quark-gluon Plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [SPIRES].

    Article  ADS  Google Scholar 

  60. I. Kirsch and D. Vaman, The D3/D7 background and flavor dependence of Regge trajectories, Phys. Rev. D 72 (2005) 026007 [hep-th/0505164] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. I.R. Klebanov, World-volume approach to absorption by non-dilatonic branes, Nucl. Phys. B 496 (1997) 231 [hep-th/9702076] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  62. I.R. Klebanov, W. Taylor and M. Van Raamsdonk, Absorption of dilaton partial waves by D3-branes, Nucl. Phys. B 560 (1999) 207 [hep-th/9905174] [SPIRES].

    Article  ADS  Google Scholar 

  63. J. de Boer, V.E. Hubeny, M. Rangamani and M. Shigemori, Brownian motion in AdS/CFT, JHEP 07 (2009) 094 [arXiv:0812.5112] [SPIRES].

    Article  Google Scholar 

  64. D.T. Son and D. Teaney, Thermal Noise and Stochastic Strings in AdS/CFT, JHEP 07 (2009) 021 [arXiv:0901.2338] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. P.M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [SPIRES].

    ADS  Google Scholar 

  66. P.M. Chesler, K. Jensen, A. Karch and L.G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [SPIRES].

    ADS  Google Scholar 

  67. A. Guijosa and J.F. Pedraza, Early-Time Energy Loss in a Strongly-Coupled SYM Plasma, JHEP 05 (2011) 108 [arXiv:1102.4893] [SPIRES].

    Article  ADS  Google Scholar 

  68. A. Güijosa and B. O. Larios, in progress.

  69. E. Eriksen and Ø. Grøn, Electrodynamics of hyperbolically accelerated charges. I: The electromagnetic field of a charged particle with hyperbolic motion, Ann. Phys. 286 (2000) 320.

    Article  ADS  MATH  Google Scholar 

  70. E. Eriksen and Ø. Grøn, Electrodynamics of Hyperbolically Accelerated Charges. II: Does a Charged Particle with Hyperbolic Motion Radiate?, Ann. Phys. 286 (2000) 343.

    Article  ADS  MATH  Google Scholar 

  71. E. Eriksen and Ø. Grøn, Electrodynamics of Hyperbolically Accelerated Charges. III: Energy-Momentum of the Field of a Hyperbolically Moving Charge, Ann. Phys. 286 (2000) 373.

    Article  ADS  MATH  Google Scholar 

  72. E. Eriksen and Ø. Grøn, Electrodynamics of Hyperbolically Accelerated Charges. IV: Energy-Momentum Conservation of Radiating Charged Particles, Ann. Phys. 297 (2002) 243.

    Article  ADS  MATH  Google Scholar 

  73. E. Eriksen and Ø. Grøn, Electrodynamics of hyperbolically accelerated charges. V: The field of a charge in the Rindler space and the Milne space, Ann. Phys. 313 (2004) 147.

    Article  ADS  MATH  Google Scholar 

  74. M. Chernicoff and A. Paredes, Accelerated detectors and worldsheet horizons in AdS/CFT, JHEP 03 (2011) 063 [arXiv:1011.4206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. A. Gupta and T. Padmanabhan, Radiation from a charged particle and radiation reaction — revisited, Phys. Rev. D 57 (1998) 7241 [physics/9710036].

    ADS  Google Scholar 

  76. A. Güijosa and J. F. Pedraza, in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Güijosa.

Additional information

ArXiv ePrint: 1106.4059

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernicoff, M., Güijosa, A. & Pedraza, J.F. The gluonic field of a heavy quark in conformal field theories at strong coupling. J. High Energ. Phys. 2011, 41 (2011). https://doi.org/10.1007/JHEP10(2011)041

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)041

Keywords

Navigation