Skip to main content
Log in

Renormalization-group improved Higgs to two gluons decay rate

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the renormalization-group scale and scheme dependence of the \(H \rightarrow gg\) decay rate at the order N\(^4\)LO in the renormalization-group summed perturbative theory, which employs the summation of all renormalization-group accessible logarithms including the leading and subsequent four sub-leading logarithmic contributions to the full perturbative series expansion. Moreover, we study the higher-order behaviour of the \(H \rightarrow gg\) decay width using the asymptotic Padé approximant method in four different renormalization schemes. Furthermore, the higher-order behaviour is independently investigated in the framework of the asymptotic Padé–Borel approximant method where generalized Borel-transform is used as an analytic continuation of the original perturbative expansion. The predictions of the asymptotic Padé–Borel approximant method are found to be in agreement with that of the asymptotic Padé approximant method. Finally, we provide the \(H \rightarrow gg\) decay rate at the order N\(^5\)LO in the fixed-order \(\Gamma _{\mathrm{N^5LO}} \,=\, \Gamma _0 (1.8375 \pm 0.047 _{\alpha _s(M_Z),1\%}\pm 0.0004_{M_t} \pm 0.0066_{M_H} \pm 0.0036_{\textrm{P}} \pm 0.007_{\text {s}} \pm 0.0005_{sc} ),\) and \(\Gamma _{\mathrm{RGSN^5LO}} \,=\, \Gamma _0 (1.841 \pm 0.047 _{\alpha _s(M_Z),1\%} \pm 0.0005_{M_t}\pm 0.0066_{M_H} \pm 0.0002_{\mu } \pm 0.0027_{\textrm{P}} \pm 0.001_{sc} )\) in the renormalization-group summed perturbative theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

The used data is explicitly quoted in the manuscript itself, and there is no need to deposit it separately.

References

  1. G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) https://doi.org/10.1016/j.physletb.2012.08.020arXiv:1207.7214 [hep-ex]

  2. C.M.S. Collaboration, Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  3. J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos, Nucl. Phys. B 106, 292 (1976). https://doi.org/10.1016/0550-3213(76)90382-5

    Article  ADS  Google Scholar 

  4. H.M. Georgi, S.L. Glashow, M.E. Machacek, D.V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978)

    Article  ADS  CAS  Google Scholar 

  5. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453, 17–82 (1995). https://doi.org/10.1016/0550-3213(95)00379-7. arXiv:hep-ph/9504378 [hep-ph]

  6. T. Inami, T. Kubota, Y. Okada, Effective gauge theory and the effect of heavy Quarks in Higgs Boson decay. Z. Phys. C 18, 69 (1983)

    Article  ADS  CAS  Google Scholar 

  7. S.A. Larin, T. van Ritbergen, J.A.M. Vermaseren, The large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons. Phys. Lett. B 362, 134 (1995). arXiv:9506465 [hep-ph])

    Article  ADS  CAS  Google Scholar 

  8. M. Schreck, M. Steinhauser, Higgs decay to gluons at NNLO. Phys. Lett. B 655, 148 (2007). arXiv:0708.0916

    Article  ADS  CAS  Google Scholar 

  9. M. Krämer, E. Laenen, M. Spira, Soft gluon radiation in Higgs boson production at the LHC Nucl. Phys. B 511, 523 (1998). arXiv:9611272 [hep-ph]

  10. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Decoupling relations to \(O(\alpha _{\rm s}^3)\) and their connection to low-energy theorems. Nucl. Phys. B 510, 61 (1998). arXiv:9708255 [hep-ph]

  11. Y. Schröder, M. Steinhauser, Four-loop decoupling relations for the strong coupling. JHEP 0601, 051 (2006). arXiv:0512058 [hep-ph]

  12. K.G. Chetyrkin, J.H. Kühn, C. Sturm, QCD decoupling at four loops. Nucl. Phys. B 744, 121 (2006). arXiv:0512060 [hep-ph]

  13. B.A. Kniehl, A.V. Kotikov, A.I. Onishchenko, O.L. Veretin, Strong-coupling constant with flavor thresholds at five loops in the \(\overline{MS}\) scheme. Phys. Rev. Lett. 97, 042001 (2006). arxiv:0607202 [hep-ph]

  14. K. Chetyrkin, P. Baikov, J. Kühn,The\(\beta\)function of Quantum Chromodynamics and the effective Higgs-gluon-gluon coupling in five-loop order 2016, 010

  15. M. Gerlach, F. Herren, M. Steinhauser, JHEP 11, 141 (2018). https://doi.org/10.1007/JHEP11(2018)141. arXiv:1809.06787 [hep-ph]

  16. A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264, 440 (1991)

    Article  ADS  CAS  Google Scholar 

  17. S. Dawson, Nucl. Phys. B 359, 283 (1991)

    Article  ADS  Google Scholar 

  18. S. Dawson, R. Kauffman, Phys. Rev. D 49, 2298 (1994)

    Article  ADS  CAS  Google Scholar 

  19. R.V. Harlander, W.B. Kilgore, Phys. Rev. D 64, 013015 (2001)

    Article  ADS  Google Scholar 

  20. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002)

    Article  ADS  PubMed  Google Scholar 

  21. C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220 (2002)

    Article  ADS  Google Scholar 

  22. V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 665, 325 (2003)

    Article  ADS  Google Scholar 

  23. S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Nucl. Phys. B 800, 127 (2008)

    Article  ADS  Google Scholar 

  24. T. Gehrmann, M. Jaquier, E.W.N. Glover, A. Koukoutsakis, JHEP 1202, 056 (2012)

    Article  ADS  Google Scholar 

  25. C. Anastasiou, C. Duhr, F. Dulat, B. Mistlberger, JHEP 1307, 003 (2013)

    Article  ADS  Google Scholar 

  26. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, JHEP 1312, 088 (2013)

    Article  ADS  Google Scholar 

  27. W.B. Kilgore, Phys. Rev. D 89(7), 073008 (2014)

    Article  ADS  Google Scholar 

  28. Y. Li, A. von Manteuffel, R.M. Schabinger, H.X. Zhu, Phys. Rev. D 91, 036008 (2015)

    Article  ADS  Google Scholar 

  29. C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, B. Mistlberger, JHEP 1503, 091 (2015)

    Article  Google Scholar 

  30. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Phys. Rev. Lett. 114(21), 212001 (2015)

    Article  ADS  PubMed  Google Scholar 

  31. C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos, B. Mistlberger, JHEP 1605, 058 (2016)

    Article  ADS  Google Scholar 

  32. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453, 17 (1995)

    Article  ADS  Google Scholar 

  33. D. Graudenz, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 70, 1372 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. R. Harlander, P. Kant, JHEP 0512, 015 (2005)

    Article  ADS  Google Scholar 

  35. C. Anastasiou, S. Bucherer, Z. Kunszt, JHEP 0910, 068 (2009)

    Article  ADS  Google Scholar 

  36. R.V. Harlander, K.J. Ozeren, Phys. Lett. B 679, 467 (2009)

    Article  ADS  CAS  Google Scholar 

  37. R. V. Harlander, K. J. Ozeren (2009) JHEP 0911 088

  38. A. Pak, M. Rogal, M. Steinhauser, Phys. Lett. B 679 (2009) 473

  39. A. Pak, M. Rogal, M. Steinhauser, JHEP 1002 (2010) 025

  40. R. Mueller, D.G. Öztürk, JHEP 08, 055 (2016). https://doi.org/10.1007/JHEP08(2016)055. arXiv:1512.08570 [hep-ph]

  41. J.M. Lindert, K. Melnikov, L. Tancredi, C. Wever, Phys. Rev. Lett. 118(25), 252002 (2017). https://doi.org/10.1103/PhysRevLett.118.252002. arXiv:1703.03886 [hep-ph]

  42. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin, V.I. Zakharov, Sov. J. Nucl. Phys. 30, 711–716 (1979)

    Google Scholar 

  43. M. Spira, JHEP 10, 026 (2016). https://doi.org/10.1007/JHEP10(2016)026. arXiv:1607.05548 [hep-ph]

  44. M. Spira, Prog. Part. Nucl. Phys. 95, 98–159 (2017). https://doi.org/10.1016/j.ppnp.2017.04.001. arXiv:1612.07651 [hep-ph]

  45. A. Djouadi, M. Spira, P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections. Phys. Lett. B 264, 440 (1991)

    Article  ADS  CAS  Google Scholar 

  46. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Hadronic Higgs decay to order \(\alpha _{\rm s}^4\). Phys. Rev. Lett. 79, 353 (1997). arXiv:9705240 [hep-ph]

  47. P.A. Baikov, K.G. Chetyrkin, Top quark mediated Higgs boson decay into hadrons to order \(\alpha _{\rm s}^5\). Phys. Rev. Lett. 97, 061803 (2006). arxiv:0604194 [hep-ph]

  48. S. Moch, A. Vogt, On third-order timelike splitting functions and top-mediated Higgs decay into hadrons. Phys. Lett. B 659, 290 (2008). arXiv:0709.3899

  49. J. Davies, M. Steinhauser, D. Wellmann, Completing the hadronic Higgs boson decay at order \(\alpha _{\rm s}^4\). Nucl. Phys. B 920, 20 (2017). arXiv:1703.02988

  50. J. Davies, M. Steinhauser, D. Wellmann, Hadronic Higgs boson decay at order \(\alpha ^{4}_{s}\) and \(\alpha ^{5}_{s}\), PoS (DIS2017) 295, arXiv:1706.00624

  51. F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, JHEP 08, 113 (2017). https://doi.org/10.1007/JHEP08(2017)113. arXiv:1707.01044 [hep-ph]

  52. F.A. Chishtie, V. Elias, Phys. Rev. D 64, 016007 (2001). https://doi.org/10.1103/PhysRevD.64.016007. arXiv:hep-ph/0012254 [hep-ph]

  53. C. T. Gao, X. G. Wu, X. D. Huang, J. Zeng, arXiv:2109.11754 [hep-ph]

  54. J. Zeng, X.G. Wu, S. Bu, J.M. Shen, S.Q. Wang, J. Phys. G 45(8), 085004 (2018). https://doi.org/10.1088/1361-6471/aace6f. arXiv:1801.01414 [hep-ph]

  55. V. Elias, F.A. Chishtie, T.G. Steele, J. Phys. G 26, 1239–1254 (2000). https://doi.org/10.1088/0954-3899/26/8/311. arXiv:hep-ph/0004140 [hep-ph]

  56. M.R. Ahmady, F.A. Chishtie, V. Elias, A.H. Fariborz, N. Fattahi, D.G.C. McKeon, T.N. Sherry, T.G. Steele, Phys. Rev. D 66, 014010 (2002). arXiv:hep-ph/0203183

  57. M.R. Ahmady, F.A. Chishtie, V. Elias, A.H. Fariborz, D.G.C. McKeon, T.N. Sherry, A. Squires, T.G. Steele, Phys. Rev. D 67, 034017 (2003). arXiv:hep-ph/0208025

  58. G. ’t Hooft, Nucl. Phys. B 61, 455-468 (1973) https://doi.org/10.1016/0550-3213(73)90376-3

  59. J.C. Collins, A.J. Macfarlane, Phys. Rev. D 10, 1201–1212 (1974). https://doi.org/10.1103/PhysRevD.10.1201

    Article  ADS  Google Scholar 

  60. C.J. Maxwell, Nucl. Phys. Proc. Suppl. 86, 74 (2000)

    Article  ADS  CAS  Google Scholar 

  61. C.J. Maxwell, A. Mirjalili, Nucl. Phys. B 577, 209 (2000). arXiv: hep-ph/0002204

    Article  ADS  Google Scholar 

  62. C.J. Maxwell, A. Mirjalili, Nucl. Phys. B 611, 423 (2001). arXiv: hep-ph/0103164

    Article  ADS  Google Scholar 

  63. D.G.C. McKeon, Int. J. Theor. Phys. 37, 817–826 (1998). https://doi.org/10.1023/A:1026620630263

    Article  Google Scholar 

  64. G. Abbas, B. Ananthanarayan, I. Caprini, J. Fischer, Phys. Rev. D 87(1), 014008 (2013). https://doi.org/10.1103/PhysRevD.87.014008. arXiv:1211.4316 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  65. G. Abbas, B. Ananthanarayan, I. Caprini, Phys. Rev. D 85, 094018 (2012). https://doi.org/10.1103/PhysRevD.85.094018. arXiv:1202.2672 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  66. B. Ananthanarayan, D. Das, Phys. Rev. D 94(11), 116014 (2016). https://doi.org/10.1103/PhysRevD.94.116014. arXiv:1610.08900 [hep-ph]

    Article  ADS  Google Scholar 

  67. B. Ananthanarayan, D. Das, M. S. A. Alam Khan, Phys. Rev. D 102, no.7, 076008 (2020) https://doi.org/10.1103/PhysRevD.102.076008arXiv:2007.10775 [hep-ph]

  68. G. Abbas, B. Ananthanarayan, I. Caprini, J. Fischer, Nucl. Part. Phys. Proc. 273–275, 2777–2779 (2016). https://doi.org/10.1016/j.nuclphysbps.2015.10.061

    Article  Google Scholar 

  69. G. Abbas, B. Ananthanarayan, I. Caprini, J. Fischer, Phys. Rev. D 88(3), 034026 (2013). https://doi.org/10.1103/PhysRevD.88.034026. arXiv:1307.6323 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  70. G. Abbas, B. Ananthanarayan, I. Caprini, Mod. Phys. Lett. A 28, 1360004 (2013). https://doi.org/10.1142/S0217732313600043. arXiv:1306.1095 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  71. G. Abbas, B. Ananthanarayan, I. Caprini, J. Fischer, PoS EPS-HEP2013, 413 (2013) https://doi.org/10.22323/1.180.0413

  72. I. Caprini, Mod. Phys. Lett. A 28, 1360003 (2013). https://doi.org/10.1142/S0217732313600031. arXiv:1306.0985 [hep-ph]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  73. I. Caprini, J. Fischer, G. Abbas, B. Ananthanarayan, Perturbative expansions in QCD improved by conformal mappings of the Borel plane, Perturbation theory: advances in research and applications, Nova science publishers (2018), pp. 211-254. arXiv:1711.04445 [hep-ph]

  74. M.A. Samuel, G. Li, E. Steinfelds, Phys. Rev. D 48, 869–872 (1993). https://doi.org/10.1103/PhysRevD.48.869

    Article  ADS  CAS  Google Scholar 

  75. M. A. Samuel, G. w. Li, E. Steinfelds (1995) Phys. Rev. E 51, 3911-3933 https://doi.org/10.1103/PhysRevE.51.3911

  76. M.A. Samuel, J.R. Ellis, M. Karliner, Phys. Rev. Lett. 74, 4380–4383 (1995). https://doi.org/10.1103/PhysRevLett.74.4380. arXiv:hep-ph/9503411 [hep-ph]

    Article  ADS  CAS  PubMed  Google Scholar 

  77. J.R. Ellis, M. Karliner, M.A. Samuel, Phys. Lett. B 400, 176–181 (1997). https://doi.org/10.1016/S0370-2693(97)00342-0. arXiv:hep-ph/9612202 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  78. J.R. Ellis, E. Gardi, M. Karliner, M.A. Samuel, Phys. Lett. B 366, 268–275 (1996). https://doi.org/10.1016/0370-2693(95)01326-1. arXiv:hep-ph/9509312 [hep-ph]

    Article  ADS  MathSciNet  CAS  Google Scholar 

  79. J.R. Ellis, I. Jack, D.R.T. Jones, M. Karliner, M.A. Samuel, Phys. Rev. D 57, 2665–2675 (1998). https://doi.org/10.1103/PhysRevD.57.2665. arXiv:hep-ph/9710302 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  80. K.G. Chetyrkin, Phys. Lett. B 404, 161–165 (1997). https://doi.org/10.1016/S0370-2693(97)00535-2. arXiv:hep-ph/9703278 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  81. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B 400, 379–384 (1997). https://doi.org/10.1016/S0370-2693(97)00370-5. arXiv:hep-ph/9701390 [hep-ph]

    Article  ADS  Google Scholar 

  82. V. Elias, T.G. Steele, F. Chishtie, R. Migneron, K.B. Sprague, Phys. Rev. D 58, 116007 (1998). https://doi.org/10.1103/PhysRevD.58.116007. arXiv:hep-ph/9806324 [hep-ph]

    Article  ADS  Google Scholar 

  83. K.G. Chetyrkin, M. Steinhauser, Nucl. Phys. B 573, 617–651 (2000). https://doi.org/10.1016/S0550-3213(99)00784-1. arXiv:hep-ph/9911434 [hep-ph]

    Article  ADS  Google Scholar 

  84. K. Melnikov, T. v. Ritbergen, Phys. Lett. B 482, 99-108 (2000) https://doi.org/10.1016/S0370-2693(00)00507-4arXiv:hep-ph/9912391 [hep-ph]

  85. L. von Smekal, K. Maltman, A. Sternbeck, The Strong coupling and its running to four loops in a minimal MOM scheme. Phys. Lett. B 681, 336 (2009). arXiv:0903.1696

    Article  ADS  Google Scholar 

  86. J.A. Gracey, Renormalization group functions of QCD in the minimal MOM scheme, J. Phys. A46 (2013) 225403 [Erratum ibid. A48 (2015) 119501], arXiv:1304.5347

  87. B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, Four-loop QCD propagators and vertices with one vanishing external momentum. JHEP 1706, 040 (2017). arXiv:1703.08532

    Article  ADS  MathSciNet  Google Scholar 

  88. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, JHEP 10, 076 (2014). https://doi.org/10.1007/JHEP10(2014)076. arXiv:1402.6611 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  89. K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, Comput. Phys. Commun. 133, 43–65 (2000). https://doi.org/10.1016/S0010-4655(00)00155-7. arXiv:hep-ph/0004189 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  90. P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update

  91. George A. Baker Jr. (Editor), John L. Gammel (Editor) Pade approximant in theoretical physics Elsevier, Amsterdam. 1st Edition (February 26, 1970)

  92. D. Boito, C.Y. London, P. Masjuan, JHEP 01, 054 (2022). https://doi.org/10.1007/JHEP01(2022)054. arXiv:2110.09909 [hep-ph]

    Article  ADS  Google Scholar 

  93. P. Ralph, R. Boas, B. Creighton, Polynomial expansions of analytic functions (Springer, Berlin, Gottingen and Heidelberg, 1958)

    Google Scholar 

  94. S. Alekhin, J. Blümlein, S. Moch, R. Placakyte, Phys. Rev. D 96(1), 014011 (2017). https://doi.org/10.1103/PhysRevD.96.014011. arXiv:1701.05838 [hep-ph]

    Article  ADS  Google Scholar 

  95. K. Fujii, C. Grojean, M. E. Peskin, T. Barklow, Y. Gao, S. Kanemura, H. D. Kim, J. List, M. Nojiri, M. Perelstein, et al.arXiv:1506.05992 [hep-ex]

  96. M. Cepeda, S. Gori, P. Ilten, M. Kado, F. Riva, R. Abdul Khalek, A. Aboubrahim, J. Alimena, S. Alioli, A. Alves, et al. CERN Yellow Rep. Monogr. 7 (2019), 221–584 https://doi.org/10.23731/CYRM-2019-007.221arXiv:1902.00134 [hep-ph]

  97. G. Degrassi, F. Maltoni, Phys. Lett. B 600, 255–260 (2004). https://doi.org/10.1016/j.physletb.2004.09.008. arXiv:hep-ph/0407249 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  98. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, arXiv:hep-ph/0610033 [hep-ph]

  99. S. Actis, G. Passarino, C. Sturm, S. Uccirati, Phys. Lett. B 670, 12–17 (2008). https://doi.org/10.1016/j.physletb.2008.10.018. arXiv:0809.1301 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  100. S. Actis, G. Passarino, C. Sturm, S. Uccirati, Nucl. Phys. B 811, 182–273 (2009). https://doi.org/10.1016/j.nuclphysb.2008.11.024. arXiv:0809.3667 [hep-ph]

    Article  ADS  CAS  Google Scholar 

  101. A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi, M. Spira, Eur. Phys. J. C 71, 1753 (2011). https://doi.org/10.1140/epjc/s10052-011-1753-8. arXiv:1107.5909 [hep-ph]

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the referee for the highly constructive feedback on this work. We are also grateful to Prof. Irinel Caprini, Prof. B. Ananthanarayan and M. S. A. Alam Khan for very important comments and suggestions on the manuscript. We are also very thankful to Prof. M. Spira for very useful comments and suggestions on the first arXiv version of the manuscript. This work is supported by the Council of Science and Technology, Govt. of Uttar Pradesh, India through the project “A new paradigm for flavour problem ” no. CST/D-1301, and Science and Engineering Research Board, Department of Science and Technology, Government of India through the project “Higgs Physics within and beyond the Standard Model” no. CRG/2022/003237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauhar Abbas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, G., Jain, A., Singh, V. et al. Renormalization-group improved Higgs to two gluons decay rate. Eur. Phys. J. Plus 139, 114 (2024). https://doi.org/10.1140/epjp/s13360-024-04925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04925-6

Navigation