Skip to main content
Log in

Double non-global logarithms in-n-out of jets

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive the leading non-global logarithms (NGLs) of ratios of jet masses m 1,2 and a jet energy veto Λ due to soft gluons splitting into regions in and out of jets. Such NGLs appear in any exclusive jet cross section with multiple jet measurements or with a veto imposed on additional jets. Here, we consider back-to-back jets of radius R produced in e + e collisions, found with a cone or recombination algorithm. The leading NGLs are of the form \(\alpha_{\text{s}}^2{\text{l}}{{\text{n}}^2}(\Lambda /{m_{{1},{2}}})\) or \(\alpha_{\text{s}}^2{\text{l}}{{\text{n}}^2}({m_1}/{m_2})\). Their coefficients depend both on the algorithm and on R. We consider cone, kT, anti-kT, and Cambridge-Aachen algorithms. In addition to determining the full algorithmic and R dependence of the leading NGLs, we derive new relations among their coefficients. We also derive to all orders in α s a factorized form for the soft function S(k L , k R , Λ) in the cross section σ(m 1, m 2, Λ) in which dependence on each of the global logs of μ/k L , μ/k R and μ/Λ determined by the renormalization group are separated from one another and from the non-global logs. The same kind of soft function, its associated non-global structure, and the algorithmic dependence we derive here will also arise in exclusive jet cross sections at hadron colliders, and must be understood and brought under control to achieve precise theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].

    ADS  Google Scholar 

  2. A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

    ADS  Google Scholar 

  5. M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E(t) flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  7. G.F. Sterman, Partons, factorization and resummation, hep-ph/9606312 [INSPIRE].

  8. H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX() in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  10. C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An effective field theory for collinear and soft gluons: heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].

    ADS  Google Scholar 

  11. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    ADS  Google Scholar 

  12. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  13. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein and I.W. Stewart, Hard scattering factorization from effective field theory, Phys. Rev. D 66 (2002) 014017 [hep-ph/0202088] [INSPIRE].

    ADS  Google Scholar 

  14. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Jets from massive unstable particles: top-mass determination, Phys. Rev. D 77 (2008) 074010 [hep-ph/0703207] [INSPIRE].

    ADS  Google Scholar 

  15. S. Fleming, A.H. Hoang, S. Mantry and I.W. Stewart, Top jets in the peak region: factorization analysis with NLL resummation, Phys. Rev. D 77 (2008) 114003 [arXiv:0711.2079] [INSPIRE].

    ADS  Google Scholar 

  16. A.H. Hoang and I.W. Stewart, Designing gapped soft functions for jet production, Phys. Lett. B 660 (2008) 483 [arXiv:0709.3519] [INSPIRE].

    ADS  Google Scholar 

  17. C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, arXiv:1106.6047 [INSPIRE].

  18. M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].

    Article  ADS  Google Scholar 

  20. R. Appleby and M. Seymour, Nonglobal logarithms in interjet energy flow with kt clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global structure of the O(\(\alpha_{\text{s}}^2\)) dijet soft function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].

    ADS  Google Scholar 

  23. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].

    ADS  Google Scholar 

  24. S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  25. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  26. Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with k t clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-p T jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Rubin, Non-global logarithms in filtered jet algorithms, JHEP 05 (2010) 005 [arXiv:1002.4557] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S.D. Ellis, A. Hornig, C. Lee, C.K. Vermilion and J.R. Walsh, Consistent factorization of jet observables in exclusive multijet cross-sections, Phys. Lett. B 689 (2010) 82 [arXiv:0912.0262] [INSPIRE].

    ADS  Google Scholar 

  34. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Banfi and M. Dasgupta, Problems in resumming interjet energy flows with k T clustering, Phys. Lett. B 628 (2005) 49 [hep-ph/0508159] [INSPIRE].

    ADS  Google Scholar 

  36. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N-jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].

    ADS  Google Scholar 

  38. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL + NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  40. R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass with and without a jet veto, arXiv:1102.0561 [INSPIRE].

  41. S. Catani and M. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

    ADS  Google Scholar 

  42. S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  43. W. M.-Y. Cheung, M. Luke and S. Zuberi, Phase space and jet definitions in SCET, Phys. Rev. D 80 (2009) 114021 [arXiv:0910.2479] [INSPIRE].

    ADS  Google Scholar 

  44. T.T. Jouttenus, Jet function with a jet algorithm in SCET, Phys. Rev. D 81 (2010) 094017 [arXiv:0912.5509] [INSPIRE].

    ADS  Google Scholar 

  45. C.W. Bauer and A.V. Manohar, Shape function effects in BX(sand BX(u)\(l\overline \nu\) decays, Phys. Rev. D 70 (2004) 034024 [hep-ph/0312109] [INSPIRE].

    ADS  Google Scholar 

  46. S. Bosch, B. Lange, M. Neubert and G. Paz, Factorization and shape function effects in inclusive B meson decays, Nucl. Phys. B 699 (2004) 335 [hep-ph/0402094] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Becher and M. Neubert, Toward a NNLO calculation of the \(\overline B\)X(sdecay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].

    ADS  Google Scholar 

  48. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Lee.

Additional information

ArXiv ePrint: 1110.0004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornig, A., Lee, C., Walsh, J.R. et al. Double non-global logarithms in-n-out of jets. J. High Energ. Phys. 2012, 149 (2012). https://doi.org/10.1007/JHEP01(2012)149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)149

Keywords

Navigation