Skip to main content
Log in

Non-Abelian discrete gauge symmetries in 4d string models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the realization of non-Abelian discrete gauge symmetries in 4d field theory and string theory compactifications. The underlying structure generalizes the Abelian case, and follows from the interplay between gaugings of non-Abelian isometries of the scalar manifold and field identifications making axion-like fields periodic. We present several classes of string constructions realizing non-Abelian discrete gauge symmetries. In particular, compactifications with torsion homology classes, where non-Abelianity arises microscopically from the Hanany-Witten effect, or compactifications with non-Abelian discrete isometry groups, like twisted tori. We finally focus on the more interesting case of magnetized branes in toroidal compactifications and quotients thereof (and their heterotic and intersecting duals), in which the non-Abelian discrete gauge symmetries imply powerful selection rules for Yukawa couplings of charged matter fields. In particular, in MSSM-like models they correspond to discrete flavour symmetries constraining the quark and lepton mass matrices, as we show in specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. L.F. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  6. M.G. Alford and F. Wilczek, Aharonov-Bohm Interaction of Cosmic Strings with Matter, Phys. Rev. Lett. 62 (1989) 1071 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. L.M. Krauss and F. Wilczek, Discrete Gauge Symmetry in Continuum Theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M.G. Alford, J. March-Russell and F. Wilczek, Discrete quantum hair on black holes and the nonabelian Aharonov-Bohm effect, Nucl. Phys. B 337 (1990) 695 [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Preskill and L.M. Krauss, Local discrete symmetry and quantum mechanical hair, Nucl. Phys. B 341 (1990) 50 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. M.G. Alford, K. Benson, S.R. Coleman, J. March-Russell and F. Wilczek, The interactions and excitations of nonabelian vortices, Phys. Rev. Lett. 64 (1990) 1632 [Erratum ibid. 65 (1990) 668] [INSPIRE].

  11. M.G. Alford, S.R. Coleman and J. March-Russell, Disentangling nonAbelian discrete quantum hair, Nucl. Phys. B 351 (1991) 735 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M.G. Alford and J. March-Russell, Discrete gauge theories, Int. J. Mod. Phys. B 5 (1991) 2641 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M.G. Alford, K.-M. Lee, J. March-Russell and J. Preskill, Quantum field theory of nonAbelian strings and vortices, Nucl. Phys. B 384 (1992) 251 [hep-th/9112038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. P.G. Camara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP 09 (2011) 110 [arXiv:1106.0060] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L. Ibáñez, A. Schellekens and A. Uranga, Discrete Gauge Symmetries in Discrete MSSM-like Orientifolds, arXiv:1205.5364 [INSPIRE].

  17. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].

    Article  ADS  Google Scholar 

  18. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 398 (1993) 301 [hep-ph/9210211] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [INSPIRE].

    ADS  Google Scholar 

  22. H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].

    ADS  Google Scholar 

  23. R.N. Mohapatra and M. Ratz, Gauged Discrete Symmetries and Proton Stability, Phys. Rev. D 76 (2007) 095003 [arXiv:0707.4070] [INSPIRE].

    ADS  Google Scholar 

  24. T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P.K.S. Vaudrevange, (Non-)Abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. H.M. Lee, S. Raby, M. Ratz, G.G. Ross, R. Schieren, et al., A unique \( Z_4^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Kappl, B. Petersen, S. Raby, M. Ratz, R. Schieren and P.K.S. Vaudrevange, String-Derived MSSM Vacua with Residual R Symmetries, Nucl. Phys. B 847 (2011) 325 [arXiv:1012.4574] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. O. Lebedev et al., The Heterotic Road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].

    ADS  Google Scholar 

  28. S. Gukov, M. Rangamani and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP 12 (1998) 025 [hep-th/9811048] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups in quiver gauge theories, Nucl. Phys. B 747 (2006) 436 [hep-th/0602094] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. B.A. Burrington, J.T. Liu and L.A. Pando Zayas, Finite Heisenberg groups from nonAbelian orbifold quiver gauge theories, Nucl. Phys. B 794 (2008) 324 [hep-th/0701028] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. D. Cremades, L. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Cremades, L. Ibáñez and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [hep-th/0404229] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Cremades, L. Ibáñez and F. Marchesano, More about the standard model at intersecting branes, hep-ph/0212048 [INSPIRE].

  34. H. Abe, K.-S. Choi, T. Kobayashi and H. Ohki, Non-Abelian Discrete Flavor Symmetries from Magnetized/Intersecting Brane Models, Nucl. Phys. B 820 (2009) 317 [arXiv:0904.2631] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. H. Abe, K.-S. Choi, T. Kobayashi, H. Ohki and M. Sakai, Non-Abelian Discrete Flavor Symmetries on Orbifolds, Int. J. Mod. Phys. A 26 (2011) 4067 [arXiv:1009.5284] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, Adv. Theor. Math. Phys. 15 (2011) 1141 [arXiv:1012.5999] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  37. K.-M. Lee, NonAbelian discrete gauge theory,, Ph.D. Thesis, Caltech University, U.S.A. (1994) [INSPIRE].

  38. T. Ortin, Gravity and strings,, Cambridge University Press (2004).

  39. D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A.I. Malc’ev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949) 9 [English translation Amer. Math. Soc. Transl. 39 (1962) 33].

  41. C. Hull and B.J. Spence, The Geometry of the gauged σ-model with Wess-Zumino term, Nucl. Phys. B 353 (1991) 379 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: The Seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].

    Article  ADS  Google Scholar 

  43. L.E. Ibáñez and A. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].

    Article  ADS  Google Scholar 

  44. B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy Instantons and Quiver Gauge Theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. F. Marchesano, D6-branes and torsion, JHEP 05 (2006) 019 [hep-th/0603210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. L. Castellani, L. Romans and N. Warner, Symmetries of coset spaces and Kaluza-Klein supergravity, Annals Phys. 157 (1984) 394 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. R. Coquereaux and A. Jadczyk, Riemannian geometry, fiber bundles, Kaluza-Klein theories and all that, World Sci. Lect. Notes Phys. 16 (1988) 1.

    Article  MathSciNet  Google Scholar 

  50. N. Kaloper and R.C. Myers, The Odd story of massive supergravity, JHEP 05 (1999) 010 [hep-th/9901045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. L.E. Ibanez and A. M. Uranga, String theory and particle physics: An introduction to string phenomenology, Cambridge University Press (2012).

  52. G. Aldazabal, P.G. Camara and J. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T. Taylor, Aspects of type-I - type-II - heterotic triality in four-dimensions, Nucl. Phys. B 489 (1997) 160 [hep-th/9608012] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type IIB orientifolds, Nucl. Phys. B 536 (1998) 29 [hep-th/9804026] [INSPIRE].

    Article  ADS  Google Scholar 

  55. F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71 (2005) 011701 [hep-th/0408059] [INSPIRE].

    ADS  Google Scholar 

  56. F. Marchesano and G. Shiu, Building MSSM flux vacua, JHEP 11 (2004) 041 [hep-th/0409132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. S.A. Abel and M.D. Goodsell, Realistic Yukawa Couplings through Instantons in Intersecting Brane Worlds, JHEP 10 (2007) 034 [hep-th/0612110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].

    Article  ADS  Google Scholar 

  59. P.G. Camara, C. Condeescu and E. Dudas, Holomorphic variables in magnetized brane models with continuous Wilson lines, JHEP 04 (2010) 029 [arXiv:0912.3369] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. A.M. Uranga, Local models for intersecting brane worlds, JHEP 12 (2002) 058 [hep-th/0208014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 [hep-ph/0611020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. H.P. Nilles, M. Ratz and P.K. Vaudrevange, Origin of family symmetries, arXiv:1204.2206 [INSPIRE].

  63. P.G. Camara and F. Marchesano, Open string wavefunctions in flux compactifications, JHEP 10 (2009) 017 [arXiv:0906.3033] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Marchesano.

Additional information

ArXiv ePrint: 1206.2383

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berasaluce-González, M., Cámara, P.G., Marchesano, F. et al. Non-Abelian discrete gauge symmetries in 4d string models. J. High Energ. Phys. 2012, 59 (2012). https://doi.org/10.1007/JHEP09(2012)059

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2012)059

Keywords

Navigation