Skip to main content
Log in

Discrete gauge symmetries in D-brane models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In particle physics model building discrete symmetries are often invoked to forbid unwanted or dangerous couplings. A classical example is the R-parity of the MSSM, which guarantees the absence of dimension four baryon- and lepton-number violating operators. Although phenomenologically useful, these discrete symmetries are, in the context of field theory, poorly motivated at a more fundamental level. Moreover, discrete global symmetries are expected to be violated in consistent couplings to quantum gravity, while their gauged versions are expected to actually exist. In this paper we study discrete gauge symmetries in brane models in string theory, and argue that they are fairly generic in this framework. In particular we study the appearance of discrete gauge symmetries in (MS)SM brane constructions in string theory, and show that a few discrete Z N gauge symmetries, including R-parity and baryon triality, appear naturally as remnants of continuous U(1) gauge symmetries with Stückelberg N (BF ) couplings. Interestingly, they correspond to the simplest anomaly-free discrete symmetries of the MSSM as classified in the early 90’s. We provide a number of examples based on type IIA intersecting brane constructions with a (MS)SM spectrum. We also study the appearance of discrete generalizations of R-parity in unified SU(5) type IIA orientifolds and local F-theory SU(5) GUTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T Banks and LJ Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. LF. Abbott and M.B. Wise, Wormholes and global symmetries, Nucl. Phys. B 325 (1989) 687 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. S.R. Coleman and K.-M. Lee, Wormholes made without massless matter fields, Nucl. Phys. B 329 (1990) 387 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. T. Banks and N. Seiberg, Symmetries and strings in field theory and gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    ADS  Google Scholar 

  6. M.G. Alford and F. Wilczek, Aharonov-Bohm interaction of cosmic strings with matter, Phys. Rev. Lett. 62 (1989) 1071 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Preskill and L.M. Krauss, Local discrete symmetry and quantum mechanical hair, Nucl. Phys. B 341 (1990) 50 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [INSPIRE].

    ADS  Google Scholar 

  10. L.E. Ibáñez and G.G. Ross, Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model, Nucl. Phys. B 368 (1992) 3 [INSPIRE].

  11. T. Banks and M. Dine, Note on discrete gauge anomalies, Phys. Rev. D 45 (1992) 1424 [hep-th/9109045] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. L.E. Ibáñez, More about discrete gauge anomalies, Nucl. Phys. B 3918 (11993) 301 [hep-ph/9210211] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [INSPIRE].

    ADS  Google Scholar 

  14. K. Kurosawa, N. Maru and T. Yanagida, Nonanomalous R symmetry in supersymmetric unified theories of quarks and leptons, Phys. Lett. B 512 (2001) 203 [hep-ph/0105136] [INSPIRE].

    ADS  Google Scholar 

  15. H.K. Dreiner, C. Luhn and M. Thormeier, What is the discrete gauge symmetry of the MSSM?, Phys. Rev. D 73 (2006) 075007 [hep-ph/0512163] [INSPIRE].

    ADS  Google Scholar 

  16. R.N. Mohapatra and M. Ratz, Gauged discrete symmetries and proton stability, Phys. Rev. D 76 (2007) 095003 [arXiv:0707.4070] [INSPIRE].

    ADS  Google Scholar 

  17. T. Araki et al., (Non-)abelian discrete anomalies, Nucl. Phys. B 805 (2008) 124 [arXiv:0805.0207] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. H.M. Lee et al., A unique \( Z_4^R \) symmetry for the MSSM, Phys. Lett. B 694 (2011) 491 [arXiv:1009.0905] [INSPIRE].

    ADS  Google Scholar 

  19. R. Kappl et al., String-derived MSSM vacua with residual R symmetries, Nucl. Phys. B 847 (2011) 325 [arXiv:1012.4574] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Font, L.E. Ibáñez and F. Quevedo, Does proton stability imply the existence of an extra Z 0?, Phys. Lett. B 228 (1989) 79 [INSPIRE].

    ADS  Google Scholar 

  21. O. Lebedev et al., The heterotic road to the MSSM with R parity, Phys. Rev. D 77 (2008) 046013 [arXiv:0708.2691] [INSPIRE].

    ADS  Google Scholar 

  22. S. Hellerman and E. Sharpe, Sums over topological sectors and quantization of Fayet-Iliopoulos parameters, arXiv:1012.5999 [INSPIRE].

  23. P.G. Cámara, L.E. Ibáñez and F. Marchesano, RR photons, JHEP 09 (2011) 110 [arXiv:1106.0060] [INSPIRE].

    Article  ADS  Google Scholar 

  24. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  26. F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [INSPIRE].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).

    Google Scholar 

  28. R. Blumenhagen, L. Görlich, B. Körs and D. Lüst, Asymmetric orbifolds, noncommutative geometry and type-I string vacua, Nucl. Phys. B 582 (2000) 44 [hep-th/0003024] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073] [INSPIRE].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, Intersecting brane worlds, JHEP 02 (2001) 047 [hep-ph/0011132] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A.M. Uranga, D-brane probes, RR tadpole cancellation and k-theory charge, Nucl. Phys. B 598 (2001) 225 [hep-th/0011048] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua: the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [INSPIRE].

    Article  ADS  Google Scholar 

  33. L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].

    Article  ADS  Google Scholar 

  34. B. Florea, S. Kachru, J. McGreevy and N. Saulina, Stringy instantons and quiver gauge theories, JHEP 05 (2007) 024 [hep-th/0610003] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cvetič and J. Halverson, TASI lectures: particle physics from perturbative and non-perturbative effects in D-braneworlds, arXiv:1101.2907 [INSPIRE].

  37. R. Blumenhagen, M. Cvetič, D. Lüst, R. Richter and T. Weigand, Non-perturbative Yukawa couplings from string instantons, Phys. Rev. Lett. 100 (2008) 061602 [arXiv:0707.1871] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Cvetič and T. Weigand, Hierarchies from D-brane instantons in globally defined Calabi-Yau orientifolds, Phys. Rev. Lett. 100 (2008) 251601 [arXiv:0711.0209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Cvetič, R. Richter and T. Weigand, Computation of D-brane instanton induced superpotential couplings: Majorana masses from string theory, Phys. Rev. D 76 (2007) 086002 [hep-th/0703028] [INSPIRE].

    ADS  Google Scholar 

  40. L.E. Ibáñez and R. Richter, Stringy instantons and Yukawa couplings in MSSM-like orientifold models, JHEP 03 (2009) 090 [arXiv:0811.1583] [INSPIRE].

    Article  ADS  Google Scholar 

  41. L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton induced neutrino Majorana masses in CFT orientifolds with MSSM-like spectra, JHEP 06 (2007) 011 [arXiv:0704.1079] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Chiral supersymmetric standard model spectra from orientifolds of Gepner models, Phys. Lett. B 609 (2005) 408 [hep-th/0403196] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds, hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83 [hep-th/0605226] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. E. Kiritsis, M. Lennek and B. Schellekens, SU(5) orientifolds, Yukawa couplings, stringy instantons and proton decay, Nucl. Phys. B 829 (2010) 298 [arXiv:0909.0271] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Anastasopoulos, G.K. Leontaris, R. Richter and A.N. Schellekens, SU(5) D-brane realizations, Yukawa couplings and proton stability, JHEP 12 (2010) 011 [arXiv:1010.5188] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and standard model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].

    Google Scholar 

  50. D. Cremades, L.E. Ibáñez and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [hep-th/0302105] [INSPIRE].

    Article  ADS  Google Scholar 

  51. F. Marchesano and G. Shiu, MSSM vacua from flux compactifications, Phys. Rev. D 71 (2005) 011701 [hep-th/0408059] [INSPIRE].

    ADS  Google Scholar 

  52. D. Cremades, L.E. Ibáñez and F. Marchesano, Intersecting brane models of particle physics and the Higgs mechanism, JHEP 07 (2002) 022 [hep-th/0203160] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Font, L.E. Ibáñez and F. Marchesano, Coisotropic D8-branes and model-building, JHEP 09 (2006) 080 [hep-th/0607219] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Blumenhagen, A. Collinucci and B. Jurke, On instanton effects in F-theory, JHEP 08 (2010) 079 [arXiv:1002.1894] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Cvetič, I. Garcia-Etxebarria and J. Halverson, Global F-theory models: instantons and gauge dynamics, JHEP 01 (2011) 073 [arXiv:1003.5337] [INSPIRE].

    Article  ADS  Google Scholar 

  56. R. Donagi and M. Wijnholt, Model building with F-theory, arXiv:0802.2969 [INSPIRE].

  57. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. C. Beasley, J.J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory — II: experimental predictions, JHEP 01 (2009) 059 [arXiv:0806.0102] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, arXiv:0808.2223 [INSPIRE].

  60. J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. 60 (2010) 237 [arXiv:1001.0577] [INSPIRE].

    Article  ADS  Google Scholar 

  61. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. H. Hayashi, T. Kawano, R. Tatar and T. Watari, Codimension-3 singularities and Yukawa couplings in F-theory, Nucl. Phys. B 823 (2009) 47 [arXiv:0901.4941] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. R. Donagi and M. Wijnholt, Higgs bundles and UV completion in F-theory, arXiv:0904.1218 [INSPIRE].

  64. J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory compactifications for supersymmetric GUTs, JHEP 08 (2009) 030 [arXiv:0904.3932] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J.J. Heckman, A. Tavanfar and C. Vafa, The point of E 8 in F-theory GUTs, JHEP 08 (2010) 040 [arXiv:0906.0581] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. J. Marsano, N. Saulina and S. Schäfer-Nameki, Monodromies, fluxes and compact three-generation F-theory GUTs, JHEP 08 (2009) 046 [arXiv:0906.4672] [INSPIRE].

    Article  ADS  Google Scholar 

  67. R. Blumenhagen, T.W. Grimm, B. Jurke and T. Weigand, Global F-theory GUTs, Nucl. Phys. B 829 (2010) 325 [arXiv:0908.1784] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  68. J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1) PQ , JHEP 04 (2010) 095 [arXiv:0912.0272] [INSPIRE].

    Article  ADS  Google Scholar 

  69. E. Dudas and E. Palti, Froggatt-Nielsen models from E 8 in F-theory GUTs, JHEP 01 (2010) 127 [arXiv:0912.0853] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. T.W. Grimm, S. Krause and T. Weigand, F-theory GUT vacua on compact Calabi-Yau fourfolds, JHEP 07 (2010) 037 [arXiv:0912.3524] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. H. Hayashi, T. Kawano, Y. Tsuchiya and T. Watari, More on dimension-4 proton decay problem in F-theory — spectral surface, discriminant locus and monodromy, Nucl. Phys. B 840 (2010) 304 [arXiv:1004.3870] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. T.W. Grimm and T. Weigand, On abelian gauge symmetries and proton decay in global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [INSPIRE].

    ADS  Google Scholar 

  73. J. Marsano, N. Saulina and S. Schäfer-Nameki, A note on G-fluxes for F-theory model building, JHEP 11 (2010) 088 [arXiv:1006.0483] [INSPIRE].

    Article  ADS  Google Scholar 

  74. E. Dudas and E. Palti, On hypercharge flux and exotics in F-theory GUTs, JHEP 09 (2010) 013 [arXiv:1007.1297] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. C. Lüdeling, H.P. Nilles and C.C. Stephan, The potential fate of local model building, Phys. Rev. D 83 (2011) 086008 [arXiv:1101.3346] [INSPIRE].

    ADS  Google Scholar 

  76. M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory GUTs with U(1) symmetries: generalities and survey, Phys. Rev. D 84 (2011) 066008 [arXiv:1102.0290] [INSPIRE].

    ADS  Google Scholar 

  77. M. Buican, D. Malyshev, D.R. Morrison, H. Verlinde and M. Wijnholt, D-branes at singularities, compactification and hypercharge, JHEP 01 (2007) 107 [hep-th/0610007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. R. Blumenhagen, G. Honecker and T. Weigand, Supersymmetric (non-)abelian bundles in the type I and SO(32) heterotic string, JHEP 08 (2005) 009 [hep-th/0507041] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. N. Seiberg, Modifying the sum over topological sectors and constraints on supergravity, JHEP 07 (2010) 070 [arXiv:1005.0002] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Soler.

Additional information

ArXiv ePrint: 1106.4169

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berasaluce-González, M., Ibáñez, L.E., Soler, P. et al. Discrete gauge symmetries in D-brane models. J. High Energ. Phys. 2011, 113 (2011). https://doi.org/10.1007/JHEP12(2011)113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2011)113

Keywords

Navigation