Skip to main content
Log in

On graviton non-gaussianities during inflation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the most general three point function for gravitational waves produced during a period of exactly de Sitter expansion. The de Sitter isometries constrain the possible shapes to only three: two preserving parity and one violating parity. These isometries imply that these correlation functions should be conformal invariant. One of the shapes is produced by the ordinary gravity action. The other shape is produced by a higher derivative correction and could be as large as the gravity contribution. The parity violating shape does not contribute to the bispectrum [1, 2], even though it is present in the wavefunction. We also introduce a spinor helicity formalism to describe de Sitter gravitational waves with circular polarization.

These results also apply to correlation functions in Anti-de Sitter space. They also describe the general form of stress tensor correlation functions, in momentum space, in a three dimensional conformal field theory. Here all three shapes can arise, including the parity violating one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Soda, H. Kodama and M. Nozawa, Parity violation in graviton non-Gaussianity, JHEP 08 (2011) 067 [arXiv:1106.3228] [SPIRES].

    Article  ADS  Google Scholar 

  2. M. Shiraishi, D. Nitta and S. Yokoyama, Parity violation of gravitons in the CMB bispectrum, arXiv:1108.0175 [SPIRES].

  3. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [arXiv:0709.0293] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Cheung, A.L. Fitzpatrick, J. Kaplan and L. Senatore, On the consistency relation of the 3-point function in single field inflation, JCAP 02 (2008) 021 [arXiv:0709.0295] [SPIRES].

    ADS  Google Scholar 

  5. X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045] [SPIRES].

    ADS  Google Scholar 

  6. S. Weinberg, Effective field theory for inflation, Phys. Rev. D 77 (2008) 123541 [arXiv:0804.4291] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  7. G. Arutyunov and S. Frolov, Three-point Green function of the stress-energy tensor in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 026004 [hep-th/9901121] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  8. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [SPIRES].

    Article  ADS  Google Scholar 

  9. P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [SPIRES].

  10. M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [SPIRES].

    ADS  Google Scholar 

  11. C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  13. E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  14. L. Senatore and M. Zaldarriaga, The effective field theory of multifield inflation, arXiv:1009.2093 [SPIRES].

  15. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [SPIRES].

  17. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Ann. Phys. 231 (1994) 311 [hep-th/9307010] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. F. Larsen, J.P. vander Schaar and R.G. Leigh, De Sitter holography and the Cosmic Microwave Background, JHEP 04 (2002) 047 [hep-th/0202127] [SPIRES].

    Article  ADS  Google Scholar 

  19. F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP 07 (2003) 051 [hep-th/0307026] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  20. F. Larsen and R. McNees, Holography, diffeomorphisms and scaling violations in the CMB, JHEP 07 (2004) 062 [hep-th/0402050] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  21. P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301 [arXiv:0907.5542] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  22. P. McFadden and K. Skenderis, Holographic non-Gaussianity, JCAP 05 (2011) 013 [arXiv:1011.0452] [SPIRES].

    ADS  Google Scholar 

  23. I. Antoniadis, P.O. Mazur and E. Mottola, Conformal invariance, dark energy and CMB non-Gaussianity, arXiv:1103.4164 [SPIRES].

  24. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JET P Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719] [SPIRES].

    ADS  Google Scholar 

  25. T.S. Bunch and P.C.W. Davies, Quantum Field Theory In de Sitter space: renormalization by point splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  26. A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity-violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [SPIRES].

    Article  ADS  Google Scholar 

  27. S. Alexander and J. Martin, Birefringent gravitational waves and the consistency check of inflation, Phys. Rev. D 71 (2005) 063526 [hep-th/0410230] [SPIRES].

    ADS  Google Scholar 

  28. C.R. Contaldi, J. Magueijo and L. Smolin, Anomalous CMB polarization and gravitational chirality, Phys. Rev. Lett. 101 (2008) 141101 [arXiv:0806.3082] [SPIRES].

    Article  ADS  Google Scholar 

  29. D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  31. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  32. D.M. Hofman, Higher derivative gravity, causality and positivity of energy in a UV complete QFT, Nucl. Phys. B 823 (2009) 174 [arXiv:0907.1625] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Kaloper, M. Kleban, A.E. Lawrence and S. Shenker, Signatures of short distance physics in the Cosmic Microwave Background, Phys. Rev. D 66 (2002) 123510 [hep-th/0201158] [SPIRES].

    ADS  Google Scholar 

  34. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. C. Cheung and D. O’Connell, Amplitudes and spinor-helicity in six dimensions, JHEP 07 (2009) 075 [arXiv:0902.0981] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [SPIRES].

    Article  Google Scholar 

  38. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  39. M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Raju, BCFW for Witten diagrams, Phys. Rev. Lett. 106 (2011) 091601 [arXiv:1011.0780] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Raju, Recursion relations for AdS/CFT correlators, Phys. Rev. D 83 (2011) 126002 [arXiv:1102.4724] [SPIRES].

    ADS  Google Scholar 

  42. F. Bastianelli, S. Frolov and A.A. Tseytlin, Three-point correlators of stress tensors in maximally-supersymmetric conformal theories in D = 3 and D = 6, Nucl. Phys. B 578 (2000) 139 [hep-th/9911135] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  45. P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429 [SPIRES].

    Article  MathSciNet  Google Scholar 

  46. S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Weinberg, Six-dimensional methods for four-dimensional conformal field theories, Phys. Rev. D 82 (2010) 045031 [arXiv:1006.3480] [SPIRES].

    ADS  Google Scholar 

  48. E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme L. Pimentel.

Additional information

ArXiv ePrint: 1104.2846

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldacena, J.M., Pimentel, G.L. On graviton non-gaussianities during inflation. J. High Energ. Phys. 2011, 45 (2011). https://doi.org/10.1007/JHEP09(2011)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2011)045

Keywords

Navigation