Skip to main content
Log in

Proof of gravity and Yang-Mills amplitude relations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Using BCFW on-shell recursion techniques, we prove a sequence of explicit n-point Kawai-Lewellen-Tye relations between gravity and Yang-Mills amplitudes at tree level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. F.A. Berends, W.T. Giele and H. Kuijf, On relations between multi-gluon and multigraviton scattering, Phys. Lett. B 211 (1988) 91 [SPIRES].

    ADS  Google Scholar 

  3. J. Bedford, A. Brandhuber, B.J. Spence and G. Travaglini, A recursion relation for gravity amplitudes, Nucl. Phys. B 721 (2005) 98 [hep-th/0502146] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. H. Elvang and D.Z. Freedman, Note on graviton MHV amplitudes, JHEP 05 (2008) 096 [arXiv:0710.1270] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Spradlin, A. Volovich and C. Wen, Three Applications of a Bonus Relation for Gravity Amplitudes, Phys. Lett. B 674 (2009) 69 [arXiv:0812.4767] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [SPIRES].

  8. Z. Bern, L.J. Dixon and D.A. Kosower, On-Shell Methods in Perturbative QCD, Annals Phys. 322 (2007) 1587 [arXiv:0704.2798] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Rel. 5 (2002) 5 [gr-qc/0206071] [SPIRES].

    MathSciNet  Google Scholar 

  10. N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills Amplitude Relations, arXiv:1005.4367 [SPIRES].

  11. R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation In Yang- Mills Theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. T. Sondergaard, New Relations for Gauge-Theory Amplitudes with Matter, Nucl. Phys. B 821 (2009) 417 [arXiv:0903.5453] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Stieberger, Open & Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [SPIRES].

  17. R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [SPIRES].

    Article  ADS  Google Scholar 

  18. V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [SPIRES].

    Article  ADS  Google Scholar 

  19. B. Feng, R. Huang and Y. Jia, Gauge Amplitude Identities by On-shell Recursion Relation in S-matrix Program, arXiv:1004.3417 [SPIRES].

  20. Y. Jia, R. Huang and C.-Y. Liu, U(1)-decoupling, KK and BCJ relations in \( \mathcal{N} = 4 \) SYM, Phys. Rev. D 82 (2010) 065001 [arXiv:1005.1821] [SPIRES].

    ADS  Google Scholar 

  21. H. Zhang, Note on the non-adjacent BCFW deformations, arXiv:1005.4462 [SPIRES].

  22. Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multi-leg one-loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, New Identities among Gauge Theory Amplitudes, Phys. Lett. B 691 (2010) 268 [arXiv:1006.3214] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. B. Feng and S. He, KLT and New Relations for N = 8 SUGRA and N = 4 SYM, arXiv:1007.0055 [SPIRES].

  25. H. Tye and Y. Zhang, Comment on the Identities of the Gluon Tree Amplitudes, arXiv:1007.0597 [SPIRES].

  26. Y. Abe, An interpretation of multigraviton amplitudes, Phys. Lett. B 623 (2005) 126 [hep-th/0504174] [SPIRES].

    ADS  Google Scholar 

  27. Z. Bern, N.E.J. Bjerrum-Bohr and D.C. Dunbar, Inherited twistor-space structure of gravity loop amplitudes, JHEP 05 (2005) 056 [hep-th/0501137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. F. Cachazo and P. Svrček, Tree level recursion relations in general relativity, hep-th/0502160 [SPIRES].

  29. N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, MHV-vertices for gravity amplitudes, JHEP 01 (2006) 009 [hep-th/0509016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. N.E.J. Bjerrum-Bohr, D.C. Dunbar, H. Ita, W.B. Perkins and K. Risager, The no-triangle hypothesis for N = 8 supergravity, JHEP 12 (2006) 072 [hep-th/0610043] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming tree amplitudes in general relativity, JHEP 11 (2007) 057 [hep-th/0702032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. Z. Bern, J.J. Carrasco, D. Forde, H. Ita and H. Johansson, Unexpected Cancellations in Gravity Theories, Phys. Rev. D 77 (2008) 025010 [arXiv:0707.1035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].

    Article  MathSciNet  Google Scholar 

  34. N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of Triangles in Maximal Supergravity Amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [SPIRES].

    Article  ADS  Google Scholar 

  36. S. Badger, N.E.J. Bjerrum-Bohr and P. Vanhove, Simplicity in the Structure of QED and Gravity Amplitudes, JHEP 02 (2009) 038 [arXiv:0811.3405] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [SPIRES].

  38. C.R. Mafra, Simplifying the Tree-level Superstring Massless Five-point Amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.H. Henry Tye and Y. Zhang, Dual Identities inside the Gluon and the Graviton Scattering Amplitudes, JHEP 06 (2010) 071 [arXiv:1003.1732] [SPIRES].

    Article  ADS  Google Scholar 

  40. N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like Relations for Color-Ordered Amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [SPIRES].

    ADS  Google Scholar 

  42. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett. B 457 (1999) 23 [hep-th/9904026] [SPIRES].

    ADS  Google Scholar 

  44. S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert Lagrangian, Phys. Lett. B 652 (2007) 128 [arXiv:0706.1778] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. N.E.J. Bjerrum-Bohr and O.T. Engelund, Gravitino Interactions from Yang-Mills Theory, Phys. Rev. D 81 (2010) 105009 [arXiv:1002.2279] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  46. M. Bianchi, H. Elvang and D.Z. Freedman, Generating Tree Amplitudes in N = 4 SYM and N = 8 SG, JHEP 09 (2008) 063 [arXiv:0805.0757] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. H. Elvang, D.Z. Freedman and M. Kiermaier, Solution to the Ward Identities for Superamplitudes, arXiv:0911.3169 [SPIRES].

  48. Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [SPIRES].

    Article  ADS  Google Scholar 

  49. N.E.J. Bjerrum-Bohr, String theory and the mapping of gravity into gauge theory, Phys. Lett. B 560 (2003) 98 [hep-th/0302131] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  50. N.E.J. Bjerrum Bohr, Generalized string theory mapping relations between gravity and gauge theory, Nucl. Phys. B 673 (2003) 41 [hep-th/0305062] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  51. N.E.J. Bjerrum-Bohr and K. Risager, String theory and the KLT-relations between gravity and gauge theory including external matter, Phys. Rev. D 70 (2004) 086011 [hep-th/0407085] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [SPIRES].

    ADS  Google Scholar 

  53. D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014] [SPIRES].

    Article  ADS  Google Scholar 

  54. Y.-X. Chen, Y.-J. Du and Q. Ma, Disk relations for tree amplitudes in minimal coupling theory of gauge field and gravity, Nucl. Phys. B 833 (2010) 28 [arXiv:1001.0060] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. Y.-X. Chen, Y.-J. Du and Q. Ma, Relations Between Closed String Amplitudes at Higher-order Tree Level and Open String Amplitudes, Nucl. Phys. B 824 (2010) 314 [arXiv:0901.1163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. R. Roiban, M. Spradlin and A. Volovich, A googly amplitude from the B-model in twistor space, JHEP 04 (2004) 012 [hep-th/0402016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in Twistor Space, JHEP 03 (2010) 110 [arXiv:0903.2110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. J. Bjerrum-Bohr.

Additional information

ArXiv ePrint: 1007.3111

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjerrum-Bohr, N.E.J., Damgaard, P.H., Feng, B. et al. Proof of gravity and Yang-Mills amplitude relations. J. High Energ. Phys. 2010, 67 (2010). https://doi.org/10.1007/JHEP09(2010)067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2010)067

Keywords

Navigation