Skip to main content
Log in

KeV warm dark matter and composite neutrinos

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Elementary keV sterile Dirac neutrinos can be a natural ingredient of the composite neutrino scenario. For a certain class of composite neutrino theories, these sterile neutrinos naturally have the appropriate mixing angles to be resonantly produced warm dark matter (WDM). Alternatively, we show these sterile neutrinos can be WDM produced by an entropy-diluted thermal freeze-out, with the necessary entropy production arising not from an out-of-equilibrium decay, but rather from the confinement of the composite neutrino sector, provided there is sufficient supercooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Olive and M.S. Turner, Cosmological bounds on the masses of stable, right-handed neutrinos, Phys. Rev. D 25 (1982) 213 [INSPIRE].

    ADS  Google Scholar 

  2. S. Dodelson and L.M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. 72 (1994) 17 [hep-ph/9303287] [INSPIRE].

    Article  ADS  Google Scholar 

  3. X.-D. Shi and G.M. Fuller, A new dark matter candidate: nonthermal sterile neutrinos, Phys. Rev. Lett. 82 (1999) 2832 [astro-ph/9810076] [INSPIRE].

    Article  ADS  Google Scholar 

  4. K. Abazajian, G.M. Fuller and M. Patel, Sterile neutrino hot, warm and cold dark matter, Phys. Rev. D 64 (2001) 023501 [astro-ph/0101524] [INSPIRE].

    ADS  Google Scholar 

  5. A. Dolgov and S. Hansen, Massive sterile neutrinos as warm dark matter, Astropart. Phys. 16 (2002)339 [hep-ph/0009083] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P.L. Biermann and A. Kusenko, Relic keV sterile neutrinos and reionization, Phys. Rev. Lett. 96 (2006) 091301 [astro-ph/0601004] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Boyarsky, A. Neronov, O. Ruchayskiy, M. Shaposhnikov and I. Tkachev, Where to find a dark matter sterile neutrino?, Phys. Rev. Lett. 97 (2006) 261302 [astro-ph/0603660] [INSPIRE].

    Article  ADS  Google Scholar 

  8. D. Boyanovsky and C. Ho, Sterile neutrino production via active-sterile oscillations: the quantum zeno effect, JHEP 07 (2007) 030 [hep-ph/0612092] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Asaka, M. Shaposhnikov and M. Laine, Lightest sterile neutrino abundance within the νMSM, JHEP 01 (2007) 091.

    Article  ADS  Google Scholar 

  10. D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev. D 79 (2009) 013011 [arXiv:0808.3340] [INSPIRE].

    ADS  Google Scholar 

  11. M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, JCAP 06 (2008) 031 [arXiv:0804.4543] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Wu, C.-M. Ho and D. Boyanovsky, Sterile neutrinos produced near the EW scale. I. Mixing angles, MSW resonances and production rates, Phys. Rev. D 80 (2009) 103511 [arXiv:0902.4278] [INSPIRE].

    ADS  Google Scholar 

  13. G.B. Gelmini, E. Osoba and S. Palomares-Ruiz, Inert-sterile neutrino: cold or warm dark matter candidate, Phys. Rev. D 81 (2010) 063529 [arXiv:0912.2478] [INSPIRE].

    ADS  Google Scholar 

  14. A. Boyarsky, O. Ruchayskiy and M. Shaposhnikov, The role of sterile neutrinos in cosmology and astrophysics, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0901.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Kusenko, Sterile neutrinos: the dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].

    Article  ADS  Google Scholar 

  16. H. de Vega and N. Sanchez, Model independent analysis of dark matter points to a particle mass at the keV scale, Mon. Not. Roy. Astron. Soc. 404 (2010) 885 [arXiv:0901.0922] [INSPIRE].

    Article  ADS  Google Scholar 

  17. H. de Vega, P. Salucci and N. Sanchez, The mass of the dark matter particle from theory and observations, New Astron. 17 (2012) 653 [arXiv:1004.1908] [INSPIRE].

    Article  ADS  Google Scholar 

  18. H. de Vega and N. Sanchez, Warm dark matter in the galaxies: theoretical and observational progresses. Highlights and conclusions of the chalonge meudon workshop 2011, arXiv:1109.3187 [INSPIRE].

  19. T. Araki and Y. Li, Q 6 flavor symmetry model for the extension of the minimal standard model by three right-handed sterile neutrinos, Phys. Rev. D 85 (2012) 065016 [arXiv:1112.5819] [INSPIRE].

    ADS  Google Scholar 

  20. C.-S. Chen and R. Takahashi, Hierarchically acting sterile neutrinos, arXiv:1112.2102 [INSPIRE].

  21. A. Merle and V. Niro, Deriving models for keV sterile neutrino dark matter with the Froggatt-Nielsen mechanism, JCAP 07 (2011) 023 [arXiv:1105.5136] [INSPIRE].

    Article  ADS  Google Scholar 

  22. C.-Q. Geng and R. Takahashi, Magnetic dipole moment and keV neutrino dark matter, Phys. Lett. B 710 (2012) 324 [arXiv:1201.1534] [INSPIRE].

    Article  ADS  Google Scholar 

  23. P. Bode, J.P. Ostriker and N. Turok, Halo formation in warm dark matter models, Astrophys. J. 556 (2001) 93 [astro-ph/0010389] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Zavala et al., The velocity function in the local environment from LCDM and LWDM constrained simulations, Astrophys. J. 700 (2009) 1779 [arXiv:0906.0585] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Kusenko and G. Segre, Neutral current induced neutrino oscillations in a supernova, Phys. Lett. B 396 (1997) 197 [hep-ph/9701311] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Boyarsky, D. Iakubovskyi, O. Ruchayskiy and V. Savchenko, Constraints on decaying Dark Matter from XMM-Newton observations of M31, Mon. Not. Roy. Astron. Soc. 387 (2008)1361 [arXiv:0709.2301] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy and M. Viel, Lyman-α constraints on warm and on warm-plus-cold dark matter models, JCAP 05 (2009) 012 [arXiv:0812.0010] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Das and K. Sigurdson, Cosmological limits on hidden sector dark matter, Phys. Rev. D 85 (2012) 063510 [arXiv:1012.4458] [INSPIRE].

    ADS  Google Scholar 

  29. C.R. Watson, Z.-Y. Li and N.K. Polley, Constraining sterile neutrino warm dark matter with Chandra observations of the Andromeda galaxy, JCAP 03 (2012) 018 [arXiv:1111.4217] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Shaposhnikov and I. Tkachev, The νMSM, inflation and dark matter, Phys. Lett. B 639 (2006)414 [hep-ph/0604236] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Anisimov, Y. Bartocci and F.L. Bezrukov, Inflaton mass in the νMSM inflation, Phys. Lett. B 671 (2009) 211 [arXiv:0809.1097] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino dark matter in gauge extensions of the standard model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].

    ADS  Google Scholar 

  33. W. Liao, keV scale νR dark matter and its detection in β decay experiment, Phys. Rev. D 82 (2010) 073001 [arXiv:1005.3351] [INSPIRE].

    ADS  Google Scholar 

  34. A. Boyarsky, J. Nevalainen and O. Ruchayskiy, Constraints on the parameters of radiatively decaying dark matter from the dark matter halo of the Milky Way and Ursa Minor, Astron. Astrophys. 471 (2007) 51 [astro-ph/0610961] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Restrictions on parameters of sterile neutrino dark matter from observations of galaxy clusters, Phys. Rev. D 74 (2006) 103506 [astro-ph/0603368] [INSPIRE].

    ADS  Google Scholar 

  36. N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Okui, Searching for composite neutrinos in the cosmic microwave background, JHEP 09 (2005) 017 [hep-ph/0405083] [INSPIRE].

    Article  ADS  Google Scholar 

  38. Y. Grossman and Y. Tsai, Leptogenesis with composite neutrinos, JHEP 12 (2008) 016 [arXiv:0811.0871] [INSPIRE].

    ADS  Google Scholar 

  39. K.L. McDonald, Light neutrinos from a mini-seesaw mechanism in warped space, Phys. Lett. B 696 (2011) 266 [arXiv:1010.2659] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Duerr, D.P. George and K.L. McDonald, Neutrino mass and μ → e + γ from a mini-seesaw, JHEP 07 (2011) 103 [arXiv:1105.0593] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  42. Y. Grossman and D.J. Robinson, Composite Dirac neutrinos, JHEP 01 (2011) 132 [arXiv:1009.2781] [INSPIRE].

    Article  ADS  Google Scholar 

  43. R. Hundi and S. Roy, Constraints on composite Dirac neutrinos from observations of galaxy clusters, Phys. Lett. B 702 (2011) 228 [arXiv:1105.0291] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Loewenstein and A. Kusenko, Dark matter search using XMM-Newton observations of Willman 1, Astrophys. J. 751 (2012) 82 [arXiv:1203.5229] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Loewenstein and A. Kusenko, Dark matter search using Chandra observations of Willman 1 and a spectral feature consistent with a decay line of a 5 keV sterile neutrino, Astrophys. J. 714 (2010) 652 [arXiv:0912.0552] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Rajaraman, W. Shepherd, T.M. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].

    ADS  Google Scholar 

  47. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    Article  ADS  Google Scholar 

  48. U. Seljak, A. Makarov, P. McDonald and H. Trac, Can sterile neutrinos be the dark matter?, Phys. Rev. Lett. 97 (2006) 191303 [astro-ph/0602430] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Kusenko, Sterile neutrinos, dark matter and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].

    Article  ADS  Google Scholar 

  50. K. Petraki and A. Kusenko, Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector, Phys. Rev. D 77 (2008) 065014 [arXiv:0711.4646] [INSPIRE].

    ADS  Google Scholar 

  51. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  52. T. DeGrand and K. Kajantie, Supercooling, entropy production, and bubble kinetics in the quark-hadron phase transition in the early universe, Phys. Lett. B 147 (1984) 273.

    Article  ADS  Google Scholar 

  53. T. Csorgo and L. Csernai, Quark-gluon plasma freezeout from a supercooled state?, Phys. Lett. B 333 (1994) 494 [hep-ph/9406365] [INSPIRE].

    Article  ADS  Google Scholar 

  54. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  55. B. Benson et al., Cosmological constraints from Sunyaev-Zeldovich-selected clusters with X-ray observations in the first 178 square degrees of the South Pole Telescope Survey, arXiv:1112.5435 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean J. Robinson.

Additional information

ArXiv ePrint: 1205.0569

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.J., Tsai, Y. KeV warm dark matter and composite neutrinos. J. High Energ. Phys. 2012, 161 (2012). https://doi.org/10.1007/JHEP08(2012)161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)161

Keywords

Navigation