Skip to main content
Log in

Physical mechanism of AdS instability and universality of holographic thermalization

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Gravitational falling in the Anti-deSitter Spacetime (AdS) has two characteristic properties: i) A thick shell becomes a thin shell. ii) Any shape become spherical. Such a focusing character of the AdS space, for collapse of dust clouds, leads to the rapid thermalization mechanism in strongly interacting system. For a conformally flat boundary, we show that such focusing mechanism is universal in all known background geometries of D-branes as well as in those of AdS spacetime. We calculate the time scale for thermalization in terms of the total mass density and the lowest upper bound of the energy distribution of the initial particles. We find t th ~ (1 − c 1/E 2)1/2/T, which is less than the typical collision time so that softer modes thermalize first. We also suggest that the same idea can shed light on the collapse of waves belonging the heavy numerical relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. W. Heinz and P. F. Kolb, Nucl. Phys. A 702, 269 (2002) [hep-ph/0111075].

    Article  ADS  Google Scholar 

  2. J. M. Maldacena, Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

    ADS  MATH  MathSciNet  Google Scholar 

  3. E. Shuryak, S.-J. Sin and I. Zahed, J. Korean Phys. Soc. 50, 384 (2007) [hep-th/0511199].

    Article  Google Scholar 

  4. U. H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, JHEP 0002, 039 (2000) [hep-th/9912209].

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Muller and A. Schafer et al., Phys. Rev. D 84, 026010 (2011) [arXiv:1103.2683 [hep-th]].

    Article  ADS  Google Scholar 

  6. S. Bhattacharyya and S. Minwalla, [arXiv:0904.0464 [hep-th]].

  7. P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 99, 152001 (2007) [arXiv:0706.0368 [hep-th]].

    Article  ADS  Google Scholar 

  8. R. A. Janik and R. B. Peschanski, Phys. Rev. D 73, 045013 (2006) [hep-th/0512162].; M. P. Heller, R. A. Janik and P. Witaszczyk, Phys. Rev. Lett. 108, 201602 (2012) [arXiv:1103.3452 [hep-th]].; S. Nakamura and S. -J. Sin, JHEP 0609, 020 (2006) [hep-th/0607123].; S. -J. Sin, S. Nakamura and S. P. Kim, JHEP 0612, 075 (2006) [hep-th/0610113].

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Bizon and A. Rostworowski, Phys. Rev. Lett. 107, 031102 (2011) [arXiv:1104.3702 [gr-qc]].

    Article  ADS  Google Scholar 

  10. O. J. C. Dias, G. T. Horowitz and J. E. Santos, Class. Quant. Grav. 29, 194002 (2012) [arXiv:1109.1825 [hepth]].

    Article  ADS  MathSciNet  Google Scholar 

  11. D. Garfinkle and L. A. Pando Zayas, Phys. Rev. D 84, 066006 (2011) [arXiv:1106.2339 [hep-th]]; D. Garfinkle, L. A. Pando Zayas and D. Reichmann, JHEP 1202, 119 (2012) [arXiv:1110.5823 [hep-th]].

    Article  ADS  Google Scholar 

  12. A. Buchel, L. Lehner and S. L. Liebling, Phys. Rev. D 86, 123011 (2012) [arXiv:1210.0890 [gr-qc]].

    Article  ADS  Google Scholar 

  13. H. Bantilan, F. Pretorius and S. S. Gubser, Phys. Rev. D 85, 084038 (2012) [arXiv:1201.2132 [hep-th]].

    Article  ADS  Google Scholar 

  14. A. Adams, P. M. Chesler and H. Liu, [arXiv:1212.0281 [hep-th]].

  15. E. Oh and S. -J. Sin, [arXiv:1302.1277 [hep-th]].

  16. J. Polchinski and M. J. Strassler, Phys. Rev. Lett. 88, 031601 (2002) [hep-th/0109174].

    Article  ADS  MathSciNet  Google Scholar 

  17. S.-J. Sin, Phys. Rev. D 50, 3650 (1994) [hepph/9205208].

    Article  ADS  Google Scholar 

  18. Simulation movie by Rostworowski available at http://lackholes.ist.utl.pt/nrhep2/Downloads/Rostworowski NRHEP2 notebooks.zip

  19. A. Zee, “Quantum field theory in a nutshell,” Princeton, UK: Princeton Univ. Pr. (2010), p. 576.

    MATH  Google Scholar 

  20. K. Huang, “Quantum field theory: From operators to path integrals” New York, USA: Wiley (1998), p. 426.

    Book  MATH  Google Scholar 

  21. F. Pretorius and M. W. Choptuik, Phys. Rev. D 62, 124012 (2000) [gr-qc/0007008].

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Wu, JHEP 1210, 133 (2012) [arXiv:1208.1393 [hepth]].

    Article  ADS  Google Scholar 

  23. A. Ayala, S. Jeon and J. I. Kapusta, Phys. Rev. C 59, 3324 (1999) [nucl-th/9807062].

    Article  ADS  Google Scholar 

  24. F. Carrasco, L. Lehner, R. C. Myers, O. Reula and A. Singh, Phys. Rev. D 86, 126006 (2012) [arXiv:1210.6702 [hep-th]].

    Article  ADS  Google Scholar 

  25. A. Adams, P. M. Chesler and H. Liu, [arXiv:1307.7267 [hep-th]].

  26. S. R. Green, F. Carrasco and L. Lehner, [arXiv:1309.7940 [hep-th]].

  27. C.-K. Chan, D. Mitra and A. Brandenburg, Phys. Rev. E 85, 036315 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Jin Sin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sin, SJ. Physical mechanism of AdS instability and universality of holographic thermalization. Journal of the Korean Physical Society 66, 151–157 (2015). https://doi.org/10.3938/jkps.66.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.151

Keywords

Navigation