Skip to main content
Log in

Displaced Supersymmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The apparent absence of light superpartners at the LHC strongly constrains the viability of the MSSM as a solution to the hierarchy problem. These constraints can be significantly alleviated by R-parity violation (RPV). Bilinear R-parity violation, with the single operator LH u , does not require any special flavor structure and can be naturally embedded in a GUT while avoiding constraints from proton decay (unlike baryon-number-violating RPV). The LSP in this scenario can be naturally long-lived, giving rise to displaced vertices. Many collider searches, particularly those selecting b-jets or leptons, are insensitive to events with such detector-scale displaced decays owing to cuts on track quality and impact parameter. We demonstrate that for decay lengths in the window ∼1–103 mm, constraints on superpartner masses can be as low as ∼450 GeV for squarks and ∼40 GeV for LSPs. In some parts of parameter space light LSPs can dominate the Higgs decay width, hiding the Higgs from existing searches. This framework motivates collider searches for detector-scale displaced vertices. LHCb may be ideally suited to trigger on such events, while ATLAS and CMS may need to trigger on missing energy or multijet signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  2. R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265 [INSPIRE].

  3. G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Raby, SUSY Model Building, arXiv:0710.2891 [INSPIRE].

  5. R. Dermisek, Unusual Higgs or Supersymmetry from Natural Electroweak Symmetry Breaking, Mod. Phys. Lett. A 24 (2009) 1631 [arXiv:0907.0297] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, arXiv:1203.4821 [INSPIRE].

  7. J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, arXiv:1110.6926 [INSPIRE].

  10. T.J. LeCompte and S.P. Martin, Large Hadron Collider reach for supersymmetric models with compressed mass spectra, Phys. Rev. D 84 (2011) 015004 [arXiv:1105.4304] [INSPIRE].

    ADS  Google Scholar 

  11. T.J. LeCompte and S.P. Martin, Compressed supersymmetry after 1/fb at the Large Hadron Collider, Phys. Rev. D 85 (2012) 035023 [arXiv:1111.6897] [INSPIRE].

    ADS  Google Scholar 

  12. J.L. Feng, K.T. Matchev and D. Sanford, Focus Point Supersymmetry Redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].

    ADS  Google Scholar 

  13. B. Allanach and B. Gripaios, Hide and seek with natural supersymmetry at the LHC, JHEP 05 (2012) 062 [arXiv:1202.6616] [INSPIRE].

    Article  ADS  Google Scholar 

  14. E. Nikolidakis and C. Smith, Minimal Flavor Violation, Seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].

    ADS  Google Scholar 

  15. C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: A Natural Theory for R-Parity Violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].

    ADS  Google Scholar 

  16. L.M. Carpenter, D.E. Kaplan and E.-J. Rhee, Reduced fine-tuning in supersymmetry with R-parity violation, Phys. Rev. Lett. 99 (2007) 211801 [hep-ph/0607204] [INSPIRE].

    Article  ADS  Google Scholar 

  17. L.M. Carpenter, D.E. Kaplan and E. Rhee, New Light Windows for Sparticle Masses and Higgs Decays in the R Parity Violating MSSM, arXiv:0804.1581 [INSPIRE].

  18. L.J. Hall and M. Suzuki, Explicit R-Parity Breaking in Supersymmetric Models, Nucl. Phys. B 231 (1984) 419 [INSPIRE].

    Article  ADS  Google Scholar 

  19. W. Porod, M. Hirsch, J. Romao and J. Valle, Testing neutrino mixing at future collider experiments, Phys. Rev. D 63 (2001) 115004 [hep-ph/0011248] [INSPIRE].

    ADS  Google Scholar 

  20. R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. de Campos et al., Probing neutrino mass with displaced vertices at the Tevatron, Phys. Rev. D 71 (2005) 075001 [hep-ph/0501153] [INSPIRE].

    ADS  Google Scholar 

  22. F. de Campos et al., Probing bilinear R-parity violating supergravity at the LHC, JHEP 05 (2008) 048 [arXiv:0712.2156] [INSPIRE].

    Article  Google Scholar 

  23. F. de Campos et al., CERN LHC signals for neutrino mass model in bilinear R-parity violating mAMSB, Phys. Rev. D 77 (2008) 115025 [arXiv:0803.4405] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. D. Aristizabal Sierra, W. Porod, D. Restrepo and C.E. Yaguna, Novel Higgs decay signals in R-parity violating models, Phys. Rev. D 78 (2008) 015015 [arXiv:0804.1907] [INSPIRE].

    ADS  Google Scholar 

  25. F. de Campos, O. Eboli, M. Magro and D. Restrepo, Searching supersymmetry at the LHCb with displaced vertices, Phys. Rev. D 79 (2009) 055008 [arXiv:0809.0007] [INSPIRE].

    ADS  Google Scholar 

  26. F. De Campos et al., Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider, Phys. Rev. D 82 (2010) 075002 [arXiv:1006.5075] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. M.J. Strassler and K.M. Zurek, Discovering the Higgs through highly-displaced vertices, Phys. Lett. B 661 (2008) 263 [hep-ph/0605193] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].

    Article  ADS  Google Scholar 

  29. B. Bellazzini, C. Csáki, J. Hubisz and J. Shao, Discovering a Higgs boson decaying to four jets in supersymmetric cascade decays, Phys. Rev. D 83 (2011) 095018 [arXiv:1012.1316] [INSPIRE].

    ADS  Google Scholar 

  30. M.A. Luty, D.J. Phalen and A. Pierce, Natural h → 4 g in Supersymmetric Models and R-Hadrons at the LHC, Phys. Rev. D 83 (2011) 075015 [arXiv:1012.1347] [INSPIRE].

    ADS  Google Scholar 

  31. A. Falkowski, J.T. Ruderman, T. Volansky and J. Zupan, Hidden Higgs Decaying to Lepton Jets, JHEP 05 (2010) 077 [arXiv:1002.2952] [INSPIRE].

    Article  ADS  Google Scholar 

  32. T. Banks, L.M. Carpenter and J.-F. Fortin, Undetected Higgs decays and neutrino masses in gauge mediated, lepton number violating models, JHEP 09 (2008) 087 [arXiv:0804.2688] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Chang, R. Dermisek, J.F. Gunion and N. Weiner, Nonstandard Higgs Boson Decays, Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 [arXiv:0801.4554] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Chang and N. Weiner, Nonstandard Higgs decays with visible and missing energy, JHEP 05 (2008) 074 [arXiv:0710.4591] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Dermisek and J.F. Gunion, The NMSSM Close to the R-symmetry Limit and Naturalness in haa Decays for m a < 2m b, Phys. Rev. D 75 (2007) 075019 [hep-ph/0611142] [INSPIRE].

    ADS  Google Scholar 

  36. D.E. Kaplan and A.E. Nelson, Solar and atmospheric neutrino oscillations from bilinear R parity violation, JHEP 01 (2000) 033 [hep-ph/9901254] [INSPIRE].

    Article  ADS  Google Scholar 

  37. Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].

    Article  ADS  Google Scholar 

  38. L.J. Hall and Y. Nomura, Gauge unification in higher dimensions, Phys. Rev. D 64 (2001) 055003 [hep-ph/0103125] [INSPIRE].

    ADS  Google Scholar 

  39. ALEPH collaboration, R. Barate et al., Search for R-parity violating decays of supersymmetric particles in e + e collisions at center-of-mass energies from 189 GeV to 202 GeV, Eur. Phys. J. C 19 (2001) 415 [hep-ex/0011008] [INSPIRE].

    ADS  Google Scholar 

  40. ALEPH collaboration, D. Buskulic et al., Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].

    Article  ADS  Google Scholar 

  41. DELPHI collaboration, P. Abreu et al., Performance of the DELPHI detector, Nucl. Instrum. Meth. A 378 (1996) 57 [INSPIRE].

    Article  ADS  Google Scholar 

  42. OPAL collaboration, M. Akrawy et al., Search for the minimal standard model Higgs boson in e + e collisions at LEP, Phys. Lett. B 253 (1991) 511 [INSPIRE].

    Article  ADS  Google Scholar 

  43. CDF collaboration, T. Aaltonen et al., Search for heavy metastable particles decaying to jet pairs in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 85 (2012) 012007 [arXiv:1109.3136] [INSPIRE].

    ADS  Google Scholar 

  44. CDF collaboration, A. Abulencia et al., Measurement of the \( t\bar{t} \) Production Cross Section in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 97 (2006) 082004 [hep-ex/0606017] [INSPIRE].

    Article  ADS  Google Scholar 

  45. D0 collaboration, V. Abazov et al., Measurement of the \( t\bar{t} \) production cross section in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV using kinematic characteristics of lepton + jets events, Phys. Rev. D 76 (2007) 092007 [arXiv:0705.2788] [INSPIRE].

    ADS  Google Scholar 

  46. ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  47. W. Adam, B. Mangano, T. Speer and T. Todorov, Track Reconstruction in the CMS tracker, CMS-NOTE-2006-041 (2006).

  48. CMS collaboration, Electron reconstruction and identification at \( \sqrt {s} = 7 \) TeV, CMS-PAS-EGM-10-004 (2010).

  49. CMS collaboration, Performance of muon identification in pp collisions at \( \sqrt {s} = 7 \) TeV, CMS-PAS-MUO-10-002 (2010).

  50. ATLAS collaboration, Observation of inclusive electrons in the ATLAS experiment at \( \sqrt {s} = {7} \) TeV., ATLAS-CONF-2010-073 (2010).

  51. ATLAS collaboration, G. Aad et al., Measurement of the Wlν and Z/γ∗ → ll production cross sections in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, JHEP 12 (2010) 060 [arXiv:1010.2130] [INSPIRE].

    Article  ADS  Google Scholar 

  52. ATLAS collaboration, G. Aad et al., Searches for supersymmetry with the ATLAS detector using final states with two leptons and missing transverse momentum in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 709 (2012) 137 [arXiv:1110.6189] [INSPIRE].

    Article  ADS  Google Scholar 

  53. ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in \( \sqrt {s} = 7 \) TeV pp collisions using 1fb −1 of ATLAS data, Phys. Rev. D 85 (2012) 012006 [arXiv:1109.6606] [INSPIRE].

    ADS  Google Scholar 

  54. ATLAS collaboration, G. Aad et al., Search for dilepton resonances in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 107 (2011) 272002 [arXiv:1108.1582] [INSPIRE].

    Article  ADS  Google Scholar 

  55. ATLAS collaboration, G. Aad et al., Inclusive search for same-sign dilepton signatures in pp collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, JHEP 10 (2011) 107 [arXiv:1108.0366] [INSPIRE].

    Article  ADS  Google Scholar 

  56. ATLAS collaboration, G. Aad et al., Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in \( \sqrt {s} = 7 \) TeV proton-proton collisions with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1647 [arXiv:1103.6208] [INSPIRE].

    Article  ADS  Google Scholar 

  57. ATLAS collaboration, Commissioning of the ATLAS high-performance b-tagging algorithms in the 7 TeV collision data, ATLAS-CONF-2011-102 (2011).

  58. CMS collaboration, Status of b-tagging and vertexing tools for 2011 data analysis, CMS-PAS-BTV-11-002 (2011).

  59. ATLAS collaboration, Performance of the Reconstruction and Identification of Hadronic Tau Decays with ATLAS, ATLAS-CONF-2011-152 (2011).

  60. CMS collaboration, Calorimeter Jet Quality Criteria for the First CMS Collision Data, CMS-PAS-JME-09-008 (2009).

  61. J. Fan, M. Reece and J.T. Ruderman, A Stealth Supersymmetry Sampler, arXiv:1201.4875 [INSPIRE].

  62. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  64. W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  65. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  66. W. Beenakker, M. Krämer, T. Plehn, M. Spira and P. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D0 collaboration, V. Abazov et al., Search for Resonant Pair Production of long-lived particles decaying to \( b\bar{b} \) in \( p\bar{p} \) collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. Lett. 103 (2009) 071801 [arXiv:0906.1787] [INSPIRE].

    Article  ADS  Google Scholar 

  68. ATLAS collaboration, G. Aad et al., Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS, Phys. Lett. B 707 (2012) 478 [arXiv:1109.2242] [INSPIRE].

    Article  ADS  Google Scholar 

  69. ATLAS collaboration, G. Aad et al., Search for a light Higgs boson decaying to long-lived weakly-interacting particles in proton-proton collisions at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 251801 [arXiv:1203.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  70. ATLAS collaboration, Triggering on Long-Lived Neutral Particles in the ATLAS Detector, PHYS-PUB-2009-082 (2009).

  71. ALEPH collaboration, R. Barate et al., Search for a scalar top almost degenerate with the lightest neutralino in e + e collisions at \( \sqrt {s} \) up to 202 GeV, Phys. Lett. B 488 (2000) 234 [INSPIRE].

    Article  ADS  Google Scholar 

  72. ALEPH collaboration, R. Barate et al., Search for sleptons in e + e collisions at center-of-mass energies up to 184 GeV, Phys. Lett. B 433 (1998) 176 [INSPIRE].

    Article  ADS  Google Scholar 

  73. ALEPH collaboration, R. Barate et al., Search for gauge mediated SUSY breaking topologies at \( \sqrt {s} \) similar to 189 GeV, Eur. Phys. J. C 16 (2000) 71 [INSPIRE].

    Article  ADS  Google Scholar 

  74. ALEPH collaboration, A. Heister et al., Search for gauge mediated SUSY breaking topologies in e + e collisions at center-of-mass energies up to 209 GeV, Eur. Phys. J. C 25 (2002) 339 [hep-ex/0203024] [INSPIRE].

    Article  ADS  Google Scholar 

  75. CMS collaboration, Search for Heavy Resonances Decaying to Long-Lived Neutral Particles in the Displaced Lepton Channel, CMS-PAS-EXO-11-004 (2011).

  76. D0 collaboration, V. Abazov et al., Search for neutral, long-lived particles decaying into two muons in \( p\bar{p} \) collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. Lett. 97 (2006) 161802 [hep-ex/0607028] [INSPIRE].

    Article  ADS  Google Scholar 

  77. D0 collaboration, V. Abazov et al., Search for long-lived particles decaying into electron or photon pairs with the D0 detector, Phys. Rev. Lett. 101 (2008) 111802 [arXiv:0806.2223] [INSPIRE].

    Article  ADS  Google Scholar 

  78. V. Barger, P. Fileviez Perez and S. Spinner, Minimal gauged U(1)(B-L) model with spontaneous R-parity violation, Phys. Rev. Lett. 102 (2009) 181802 [arXiv:0812.3661] [INSPIRE].

    Article  ADS  Google Scholar 

  79. P. Fileviez Perez and S. Spinner, The Minimal Theory for R-parity Violation at the LHC, JHEP 04 (2012) 118 [arXiv:1201.5923] [INSPIRE].

    Article  ADS  Google Scholar 

  80. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 4.7 fb −1 of \( \sqrt {s} = 7 \) TeV proton-proton collision data, ATLAS-CONF-2012-033 (2012).

  81. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7} \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    Article  ADS  Google Scholar 

  82. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7 \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

    Article  ADS  Google Scholar 

  83. ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in L = 4.7 fb −1 of \( \sqrt {s} = 7 \) TeV proton-proton collisions, ATLAS-CONF-2012-037 (2012).

  84. ATLAS collaboration, G. Aad et al., Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using \( \sqrt {s} = 7 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2011) 099 [arXiv:1110.2299] [INSPIRE].

    Article  ADS  Google Scholar 

  85. H. Cheng, D. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation, Phys. Lett. B 515 (2001) 395 [hep-ph/0106098] [INSPIRE].

    Article  ADS  Google Scholar 

  86. P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].

    Article  ADS  Google Scholar 

  87. ATLAS collaboration, Search for supersymmetry in pp collisions at \( \sqrt {s} = 7 \) TeV in final states with missing transverse momentum, b-jets and no leptons with the ATLAS detector, ATLAS-CONF-2011-098 (2011).

  88. ATLAS collaboration, Search for supersymmetry in pp collisions at \( \sqrt {s} = 7 \) TeV in final states with missing transverse momentum, b-jets and no leptons with the ATLAS detector, ATLAS-CONF-2011-098 (2011).

  89. ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = 7 \) TeV in final states with missing transverse momentum and b-jets, Phys. Lett. B 701 (2011) 398 [arXiv:1103.4344] [INSPIRE].

    Article  ADS  Google Scholar 

  90. S. Asai, Y. Azuma, M. Endo, K. Hamaguchi and S. Iwamoto, Stau Kinks at the LHC, JHEP 12 (2011) 041 [arXiv:1103.1881] [INSPIRE].

    Article  ADS  Google Scholar 

  91. ATLAS collaboration, Search for events with large missing transverse momentum, jets, and at least two tau leptons in 7 TeV proton-proton collision data with the ATLAS detector, ATLAS-CONF-2012-002 (2012).

  92. ATLAS collaboration, Further search for supersymmetry at \( \sqrt {s} = 7 \) TeV in final states with jets, missing transverse momentum and one isolated lepton, ATLAS-CONF-2012-041 (2012) (2012).

  93. CDF collaboration, T. Aaltonen et al., Inclusive Search for Squark and Gluino Production in \( p\bar{p} \) Collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 121801 [arXiv:0811.2512] [INSPIRE].

    Article  ADS  Google Scholar 

  94. D0 collaboration, V. Abazov et al., Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 f b −1 of pp collision data at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 660 (2008) 449 [arXiv:0712.3805] [INSPIRE].

    Article  ADS  Google Scholar 

  95. CDF collaboration, F. Abe et al., Search for squarks and gluinos from pp collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. Lett. 69 (1992) 3439 [INSPIRE].

    Article  ADS  Google Scholar 

  96. D0 collaboration, S. Abachi et al., Search for squarks and gluinos in pp collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. Lett. 75 (1995) 618 [INSPIRE].

    Article  ADS  Google Scholar 

  97. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = 7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  98. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = 7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    Article  ADS  Google Scholar 

  99. ALEPH, DELPHI, L3, OPAL collaborations, LEP Working Group for Higgs Boson Searches, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

    Article  ADS  Google Scholar 

  100. OPAL collaboration, G. Abbiendi et al., Decay mode independent searches for new scalar bosons with the OPAL detector at LEP, Eur. Phys. J. C 27 (2003) 311 [hep-ex/0206022] [INSPIRE].

    Article  ADS  Google Scholar 

  101. P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, A Little Solution to the Little Hierarchy Problem: A Vector-like Generation, Phys. Rev. D 81 (2010) 055016 [arXiv:0910.3020] [INSPIRE].

    ADS  Google Scholar 

  102. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].

    ADS  Google Scholar 

  103. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, Little SUSY hierarchy in mixed modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029] [INSPIRE].

    Article  ADS  Google Scholar 

  104. R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].

    Article  ADS  Google Scholar 

  105. Z. Chacko, Y. Nomura and D. Tucker-Smith, A minimally fine-tuned supersymmetric standard model, Nucl. Phys. B 725 (2005) 207 [hep-ph/0504095] [INSPIRE].

    Article  ADS  Google Scholar 

  106. J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE].

    ADS  Google Scholar 

  107. J.R. Espinosa and M. Quirós, Gauge unification and the supersymmetric light Higgs mass, Phys. Rev. Lett. 81 (1998) 516 [hep-ph/9804235] [INSPIRE].

    Article  ADS  Google Scholar 

  108. P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    Article  ADS  Google Scholar 

  109. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  110. J. Casas, J. Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137] [INSPIRE].

    Article  ADS  Google Scholar 

  111. A. Brignole, J. Casas, J. Espinosa and I. Navarro, Low scale supersymmetry breaking: effective description, electroweak breaking and phenomenology, Nucl. Phys. B 666 (2003) 105 [hep-ph/0301121] [INSPIRE].

    Article  ADS  Google Scholar 

  112. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

    ADS  Google Scholar 

  113. S. Chang, C. Kilic and R. Mahbubani, The new fat Higgs: slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].

    ADS  Google Scholar 

  114. A. Delgado and T.M. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  115. A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [INSPIRE].

    ADS  Google Scholar 

  116. K. Babu, I. Gogoladze and C. Kolda, Perturbative unification and Higgs boson mass bounds, hep-ph/0410085 [INSPIRE].

  117. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, TeV Scale Mirage Mediation and Natural Little SUSY Hierarchy, Phys. Rev. D 75 (2007) 095012 [hep-ph/0612258] [INSPIRE].

    ADS  Google Scholar 

  118. Super-Kamiokande collaboration, Y. Hayato et al., Search for proton decay through \( p \to \bar{\nu }{K^{ + }} \) in a large water Cherenkov detector, Phys. Rev. Lett. 83 (1999) 1529 [hep-ex/9904020] [INSPIRE].

    Article  ADS  Google Scholar 

  119. A. Bay, private communication.

  120. ATLAS collaboration, G. Aad et al., Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at \( \sqrt {s} = 7 \) TeV, Eur. Phys. J. C 72 (2012) 1993 [arXiv:1202.4847] [INSPIRE].

    Article  ADS  Google Scholar 

  121. CMS collaboration, Search for new physics with long-lived particles decaying to photons and missing energy, CMS-PAS-EXO-11-067 (2011).

  122. J. March-Russell and S.M. West, A simple model of neutrino masses from supersymmetry breaking, Phys. Lett. B 593 (2004) 181 [hep-ph/0403067] [INSPIRE].

    Article  ADS  Google Scholar 

  123. N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [INSPIRE].

    ADS  Google Scholar 

  124. N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Neutrino masses at v 3/2, hep-ph/0007001 [INSPIRE].

  125. F. Borzumati and Y. Nomura, Low scale seesaw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [INSPIRE].

    ADS  Google Scholar 

  126. F. Borzumati, K. Hamaguchi, Y. Nomura and T. Yanagida, Variations on supersymmetry breaking and neutrino spectra, hep-ph/0012118 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Saraswat.

Additional information

ArXiv ePrint: 1204.6038

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, P.W., Kaplan, D.E., Rajendran, S. et al. Displaced Supersymmetry. J. High Energ. Phys. 2012, 149 (2012). https://doi.org/10.1007/JHEP07(2012)149

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)149

Keywords

Navigation