Skip to main content
Log in

A 5d/3d duality from relativistic integrable system

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose and prove a new exact duality between the F-terms of supersymmetric gauge theories in five and three dimensions with adjoint matter fields. The theories are compactified on a circle and are subject to the Ω deformation. In the limit proposed by Nekrasov and Shatashvili, the supersymmetric vacua become isolated and are identified with the eigenstates of a quantum integrable system. The effective twisted superpotentials are the Yang-Yang functional of the relativistic elliptic Calogero-Moser model. We show that they match on-shell by deriving the Bethe ansatz equation from the saddle point of the five-dimensional partition function. We also show that the Chern-Simons terms match and extend our proposal to the elliptic quiver generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gorsky and A. Mironov, Integrable many body systems and gauge theories, in Integrable hierarchies and modern physical theories, H. Aratyn et al eds., Springer, U.S.A. (2001), hep-th/0011197 [INSPIRE].

    Google Scholar 

  2. N.A. Nekrasov and S.L. Shatashvili, Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [INSPIRE].

  3. S. Reffert, General Ω deformations from closed string backgrounds, JHEP 04 (2012) 059 [arXiv:1108.0644] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Hellerman, D. Orlando and S. Reffert, String theory of the Ω deformation, JHEP 01 (2012) 148 [arXiv:1106.0279] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Hellerman, D. Orlando and S. Reffert, The Ω deformation from string and M-theory, JHEP 07 (2012) 061 [arXiv:1204.4192] [INSPIRE].

    Article  ADS  Google Scholar 

  6. N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  9. D. Orlando and S. Reffert, Relating gauge theories via gauge/Bethe correspondence, JHEP 10 (2010)071 [arXiv:1005.4445] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. K. Muneyuki, T.-S. Tai, N. Yonezawa and R. Yoshioka, Baxters T-Q equation, \({{{{\text{SU}}(N)}} \left/ {{{\text{SU}}{{\left( {2} \right)}^N}^{ - {3}}}} \right.}\) correspondence and Ω-deformed Seiberg-Witten prepotential, JHEP 09 (2011) 125 [arXiv:1107.3756] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. N. Dorey, S. Lee and T.J. Hollowood, Quantization of integrable systems and a 2d/4d duality, JHEP 10 (2011) 077 [arXiv:1103.5726] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. H.-Y. Chen, N. Dorey, T.J. Hollowood and S. Lee, A new 2d/4d duality via integrability, JHEP 09 (2011) 040 [arXiv:1104.3021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Annals Phys. 170 (1986) 370 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. H.W. Braden and R. Sasaki, The Ruijsenaars-Schneider model, Prog. Theor. Phys. 97 (1997) 1003 [hep-th/9702182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Braden, A. Marshakov, A. Mironov and A. Morozov, The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory, Nucl. Phys. B 558 (1999) 371 [hep-th/9902205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Dorey and T.J. Hollowood, On the Coulomb branch of a marginal deformation of N = 4 SUSY Yang-Mills, JHEP 06 (2005) 036 [hep-th/0411163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Dorey, T.J. Hollowood and S.P. Kumar, An exact elliptic superpotential for N = 1* deformations of finite N = 2 gauge theories, Nucl. Phys. B 624 (2002) 95 [hep-th/0108221] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. B. Collie and D. Tong, Instantons, fermions and Chern-Simons terms, JHEP 07 (2008) 015 [arXiv:0804.1772] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Kim, K.-M. Lee and S. Lee, Dyonic instantons in 5-dim Yang-Mills Chern-Simons theories, JHEP 08 (2008) 064 [arXiv:0804.1207] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G.V. Dunne, Aspects of Chern-Simons theory, hep-th/9902115 [INSPIRE].

  23. B. Collie and D. Tong, The dynamics of Chern-Simons vortices, Phys. Rev. D 78 (2008) 065013 [arXiv:0805.0602] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. B. Collie, Dyonic non-abelian vortices, J. Phys. A 42 (2009) 085404 [arXiv:0809.0394] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. K. Ohta, Moduli space of vacua of supersymmetric Chern-Simons theories and type IIB branes, JHEP 06 (1999) 025 [hep-th/9904118] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B.-H. Lee, H.-j. Lee, N. Ohta and H.S. Yang, Maxwell Chern-Simons solitons from type IIB string theory, Phys. Rev. D 60 (1999) 106003 [hep-th/9904181] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Aganagic, K. Hori, A. Karch and D. Tong, Mirror symmetry in (2 + 1)-dimensions and (1 + 1)-dimensions, JHEP 07 (2001) 022 [hep-th/0105075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum integrable systems, arXiv:0711.1472 [INSPIRE].

  31. N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. H. Awata and H. Kanno, Refined BPS state counting from Nekrasovs formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. Y. Tachikawa, Five-dimensional Chern-Simons terms and Nekrasovs instanton counting, JHEP 02 (2004) 050 [hep-th/0401184] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. H.W. Braden and T.J. Hollowood, The curve of compactified 6D gauge theories and integrable systems, JHEP 12 (2003) 023 [hep-th/0311024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  Google Scholar 

  37. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Pasquetti, Factorisation of N = 2 theories on the squashed 3-sphere, JHEP 04 (2012) 120 [arXiv:1111.6905] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. Y. Terashima and M. Yamazaki, SL(2, \(\mathbb{R}\)) Chern-Simons, Liouville and gauge theory on duality walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

    Article  ADS  Google Scholar 

  41. T. Dimofte and S. Gukov, Chern-Simons theory and S-duality, arXiv:1106.4550 [INSPIRE].

  42. T. Dimofte, D. Gaiotto and S. Gukov, Gauge theories labelled by three-manifolds, arXiv:1108.4389 [INSPIRE].

  43. A.G. Bytsko and J. Teschner, Quantization of models with non-compact quantum group symmetry: modular XXZ magnet and lattice sinh-Gordon model, J. Phys. A 39 (2006) 12927 [hep-th/0602093] [INSPIRE].

    MathSciNet  Google Scholar 

  44. J. Kallen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].

    ADS  Google Scholar 

  45. K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric gauge theories on the five-sphere, arXiv:1203.0371 [INSPIRE].

  46. A. Goncharov and R. Kenyon, Dimers and cluster integrable systems, arXiv:1107.5588 [INSPIRE].

  47. R. Eager, S. Franco and K. Schaeffer, Dimer models and integrable systems, JHEP 06 (2012) 106 [arXiv:1107.1244] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhao.

Additional information

ArXiv ePrint: 1205.4230

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HY., Hollowood, T.J. & Zhao, P. A 5d/3d duality from relativistic integrable system. J. High Energ. Phys. 2012, 139 (2012). https://doi.org/10.1007/JHEP07(2012)139

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)139

Keywords

Navigation