Skip to main content
Log in

Quantization of integrable systems and a 2d/4d duality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a new duality between the F-terms of supersymmetric field theories defined in two-and four-dimensions respectively. The duality relates \( \mathcal{N} = 2 \) super-symmetric gauge theories in four dimensions, deformed by an Ω-background in one plane, to \( \mathcal{N} = \left( {2,2} \right) \) gauged linear σ-models in two dimensions. On the four dimensional side, our main example is \( \mathcal{N} = 2 \) SQCD with gauge group G = SU(L) and N F  = 2 L fundamental flavours. Using ideas of Nekrasov and Shatashvili, we argue that the Coulomb branch of this theory provides a quantization of the classical Heisenberg SL(2) spin chain. Agreement with the standard quantization via the Algebraic Bethe Ansatz implies the existence of an isomorphism between the chiral ring of the 4 d theory and that of a certain two-dimensional theory. The latter can be understood as the worldvolume theory on a surface operator/vortex string probing the Higgs branch of the same 4 d theory. We check the proposed duality by explicit calculation at low orders in the instanton expansion. One striking consequence is that the Seiberg-Witten solution of the 4 d theory is captured by a one-loop computation in two dimensions. The duality also has interesting connections with the AGT conjecture, matrix models and topological string theory where it corresponds to a refined version of the geometric transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192 193 (2009) 91 [arXiv:0901.4744] [SPIRES].

    Article  MathSciNet  Google Scholar 

  4. N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  5. N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [SPIRES].

  6. A. Marshakov, A. Mironov and A. Morozov, On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles, J. Geom. Phys. 61 (2011) 1203 [arXiv:1011.4491] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. A. Gorsky, I. Krichever, A. Marshakov, A. Mironov and A. Morozov, Integrability and Seiberg-W itten exact solution, Phys. Lett. B 355 (1995) 466 [hep-th/9505035] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. E.J. Martinec, Integrable Structures in Supersymmetric Gauge and String Theory, Phys. Lett. B 367 (1996) 91 [hep-th/9510204] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. R. Donagi and E. Witten, Supersymmetric Yang-Mills Theory And Integrable Systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Gorsky, A. Marshakov, A. Mironov and A. Morozov, N = 2 Supersymmetric QCD and Integrable Spin Chains: Rational Case N f < 2N c , Phys. Lett. B 380 (1996) 75 [hep-th/9603140] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. A. Gorsky, S. Gukov and A. Mironov, Multiscale N = 2 SUSY field theories, integrable systems and their stringy/brane origin. I, Nucl. Phys. B 517 (1998) 409 [hep-th/9707120] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Gorsky, S. Gukov and A. Mironov, SUSY field theories, integrable systems and their stringy/brane origin. II, Nucl. Phys. B 518 (1998) 689 [hep-th/9710239] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Dijkgraaf and C. Vafa, Matrix models, topological strings and supersymmetric gauge theories, Nucl. Phys. B 644 (2002) 3 [hep-th/0206255] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Dijkgraaf and C. Vafa, On geometry and matrix models, Nucl. Phys. B 644 (2002) 21 [hep-th/0207106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Dijkgraaf and C. Vafa, A perturbative window into non-perturbative physics, hep-th/0208048 [SPIRES].

  17. M. Shifman and A. Yung, Non-Abelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  20. D. Tong, TASI lectures on solitons, hep-th/0509216 [SPIRES].

  21. M. Shifman and A. Yung, Supersymmetric Solitons and How They Help Us Understand Non-Abelian Gauge Theories, Rev. Mod. Phys. 79 (2007) 1139 [hep-th/0703267] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. M. Shifman and A. Yung, Non-Abelian semilocal strings in N = 2 supersymmetric QCD, Phys. Rev. D 73 (2006) 125012 [hep-th/0603134] [SPIRES].

    ADS  Google Scholar 

  23. M. Shifman, W. Vinci and A. Yung, Effective World-Sheet Theory for Non-Abelian Semilocal Strings in N = 2 Supersymmetric QCD, Phys. Rev. D 83 (2011) 125017 [arXiv:1104.2077] [SPIRES].

    ADS  Google Scholar 

  24. K. Hori and D. Tong, Aspects of non-Abelian gauge dynamics in two-dimensional N = (2, 2) theories, JHEP 05 (2007) 079 [hep-th/0609032] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Marshakov and N. Nekrasov, Extended Seiberg-Witten theory and integrable hierarchy, JHEP 01 (2007) 104 [hep-th/0612019] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. S.R. Coleman, More About the Massive Schwinger Model, Ann. Phys. 101 (1976) 239 [SPIRES].

    Article  ADS  Google Scholar 

  27. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. N.A. Nekrasov, Seiberg-W itten Prepotential From Instanton Counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].

    MathSciNet  Google Scholar 

  29. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].

  30. L.D. Faddeev, How Algebraic Bethe Ansatz works for integrable model, hep-th/9605187 [SPIRES].

  31. S.E. Derkachov, G.P. Korchemsky and A.N. Manashov, Separation of variables for the quantum SL(2, R) spin chain, JHEP 07 (2003) 047 [hep-th/0210216] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. L.D. Faddeev and G.P. Korchemsky, High-energy QCD as a completely integrable model, Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [SPIRES].

    ADS  Google Scholar 

  33. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113 [arXiv:0909.0945] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. T. Dimofte, S. Gukov and L. Hollands, Vortex Counting and Lagrangian 3-manifolds, arXiv:1006.0977 [SPIRES].

  36. Y. Yoshida, Localization of Vortex Partition Functions in \( \mathcal{N} = \left( {2,2} \right) \) Super Yang-Mills theory, arXiv:1101.0872 [SPIRES].

  37. G. Bonelli, A. Tanzini and J. Zhao, Vertices, Vortices & Interacting Surface Operators, arXiv:1102.0184 [SPIRES].

  38. R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  39. R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [SPIRES].

  40. N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [SPIRES].

    ADS  Google Scholar 

  41. N. Dorey, T.J. Hollowood and D. Tong, The BPS spectra of gauge theories in two and four dimensions, JHEP 05 (1999) 006 [hep-th/9902134] [SPIRES].

    Article  ADS  Google Scholar 

  42. S. Lee and P. Yi, A Study of Wall-Crossing: Flavored Kinks in D = 2 QED, JHEP 03 (2010) 055 [arXiv:0911.4726] [SPIRES].

    Article  ADS  Google Scholar 

  43. A.V. Belitsky, A.S. Gorsky and G.P. Korchemsky, Gauge/string duality for QCD conformal operators, Nucl. Phys. B 667 (2003) 3 [hep-th/0304028] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  44. A.V. Belitsky, V.M. Braun, A.S. Gorsky and G.P. Korchemsky, Integrability in QCD and beyond, Int. J. Mod. Phys. A 19 (2004) 4715 [hep-th/0407232] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. A.V. Belitsky, A.S. Gorsky and G.P. Korchemsky, Logarithmic scaling in gauge/string correspondence, Nucl. Phys. B 748 (2006) 24 [hep-th/0601112] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Mironov and A. Morozov, Nekrasov Functions and Exact Bohr-Sommerfeld Integrals, JHEP 04 (2010) 040 [arXiv:0910.5670] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. A. Mironov and A. Morozov, Nekrasov Functions from Exact BS Periods: the Case of SU(N ), J. Phys. A 43 (2010) 195401 [arXiv:0911.2396] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. A. Mironov, A. Morozov and S. Shakirov, Matrix Model Conjecture for Exact BS Periods and Nekrasov Functions, JHEP 02 (2010) 030 [arXiv:0911.5721] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. N. Dorey, V.V. Khoze and M.P. Mattis, On N = 2 supersymmetric QCD with 4 flavors, Nucl. Phys. B 492 (1997) 607 [hep-th/9611016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Popolitov, On relation between Nekrasov functions and BS periods in pure SU(N) case, arXiv:1001.1407 [SPIRES].

  51. Y. Zenkevich, Nekrasov prepotential with fundamental matter from the quantum spin chain, Phys. Lett. B 701 (2011) 630 [arXiv:1103.4843] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  52. K. Maruyoshi and M. Taki, Deformed Prepotential, Quantum Integrable System and Liouville Field Theory, Nucl. Phys. B 841 (2010) 388 [arXiv:1006.4505] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. P. Sulkowski, Matrix models for β-ensembles from Nekrasov partition functions, JHEP 04 (2010) 063 [arXiv:0912.5476] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. C. Kozcaz, S. Pasquetti and N. Wyllard, A & B model approaches to surface operators and Toda theories, JHEP 08 (2010) 042 [arXiv:1004.2025] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. M. Taki, Surface Operator, Bubbling Calabi-Yau and AGT Relation, JHEP 07 (2011) 047 [arXiv:1007.2524] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  57. A. Hanany and K. Hori, Branes and N = 2 theories in two dimensions, Nucl. Phys. B 513 (1998) 119 [hep-th/9707192] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Destri and H.J. DeVega, Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories, Nucl. Phys. B 438 (1995) 413 [hep-th/9407117] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. R. Poghossian, Deforming SW curve, JHEP 04 (2011) 033 [arXiv:1006.4822] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. F. Fucito, J.F. Morales, D.R. Pacifici and R. Poghossian, Gauge theories on Ω-backgrounds from non commutative Seiberg-Witten curves, JHEP 05 (2011) 098 [arXiv:1103.4495] [SPIRES].

    Article  ADS  Google Scholar 

  61. H.Y. Chen, N. Dorey, T. Hollowood and S. Lee, A New 2 d/4d Duality via Integrability, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick Dorey.

Additional information

ArXiv ePrint: 1103.5726

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorey, N., Lee, S. & Hollowood, T.J. Quantization of integrable systems and a 2d/4d duality. J. High Energ. Phys. 2011, 77 (2011). https://doi.org/10.1007/JHEP10(2011)077

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)077

Keywords

Navigation