Skip to main content
Log in

Contact manifolds, contact instantons, and twistor geometry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Recently, Källén & Zabzine computed the partition function of a twisted supersymmetric Yang-Mills theory on the five-dimensional sphere using localisation techniques. Key to their construction is a five-dimensional generalisation of the instanton equation to which they refer as the contact instanton equation. Subject of this article is the twistor construction of this equation when formulated on K-contact manifolds and the discussion of its integrability properties. We also present certain extensions to higher dimensions and supersymmetric generalisations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Ward, On self-dual gauge fields, Phys. Lett. A 61 (1977) 81 [INSPIRE].

    ADS  Google Scholar 

  2. M. Atiyah and R.S. Ward, Instantons and algebraic geometry, Commun. Math. Phys. 55 (1977) 117 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Penrose, Twistor quantization and curved space-time, Int. J. Theor. Phys. 1 (1968) 61 [INSPIRE].

    Article  Google Scholar 

  5. R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969) 38 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Penrose and M.A. MacCallum, Twistor theory: an approach to the quantization of fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Atiyah, N.J. Hitchin, and I. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lond. A 362 (1978) 425.

    MathSciNet  ADS  Google Scholar 

  8. R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976) 31 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. R.S. Ward, Self-dual space-times with cosmological constant, Commun. Math. Phys. 78 (1980) 1 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. Y. I. Manin, Gauge field theory and complex geometry, Springer Verlag, Berlin Germany (1988).

    MATH  Google Scholar 

  11. R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge University Press, Cambridge U.K. (1990).

    Book  Google Scholar 

  12. L.J. Mason and N.M.J. Woodhouse, Integrability, self-duality, and twistor theory, Clarendon, Oxford U.K. (1996).

    MATH  Google Scholar 

  13. M. Dunajski, Solitons, instantons and twistors, Oxford University Press, Oxford U.K. (2009).

    Google Scholar 

  14. J. Källen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric gauge theories on the five-sphere, arXiv:1203.0371 [INSPIRE].

  16. D. Harland and C. Nölle, Instantons and Killing spinors, JHEP 03 (2012) 082 [arXiv:1109.3552] [INSPIRE].

    Article  ADS  Google Scholar 

  17. G. Tian, Gauge theory and calibrated geometry. 1., Annals Math. 151 (2000) 193 [math/0010015] [INSPIRE].

    Article  MATH  Google Scholar 

  18. M. Itoh, Contact metric 5-manifolds, CR twistor spaces and integrability, J. Math. Phys. 43 (2002) 3783 [Erratum ibid. 44 (2003) 366].

    Google Scholar 

  19. J.H. Rawnsley, Flat partial connections and holomorphic structures in C vector bundles, Proc. Amer. Math. Soc. 73 (1979) 391.

    MathSciNet  MATH  Google Scholar 

  20. A.D. Popov, C. Sämann and M. Wolf, The topological B-model on a mini-supertwistor space and supersymmetric Bogomolny monopole equations, JHEP 10 (2005) 058 [hep-th/0505161] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720 [INSPIRE].

  25. H. Linander and F. Ohlsson, (2, 0) theory on circle fibrations, JHEP 01 (2012) 159 [arXiv:1111.6045] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. T.N. Bailey and M.G. Eastwood, Complex paraconformal manifoldstheir differential geometry and twistor theory, Forum Math. 3 (1991) 61.

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Corrigan, C. Devchand, D. Fairlie and J. Nuyts, First order equations for gauge fields in spaces of dimension greater than four, Nucl. Phys. B 214 (1983) 452 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. R.S. Ward, Completely solvable gauge field equations in dimension greater than four, Nucl. Phys. B 236 (1984) 381 [INSPIRE].

    Article  ADS  Google Scholar 

  29. S.K. Donaldson, Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1.

    Article  MathSciNet  MATH  Google Scholar 

  30. K.K. Uhlenbeck and S.-T. Yau, On the existence of Hermitian Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 38 (1986) 257.

    Article  MathSciNet  Google Scholar 

  31. S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231.

    Article  MathSciNet  Google Scholar 

  32. M. Mamone Capriai and S.M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988) 517.

    Article  MathSciNet  ADS  Google Scholar 

  33. L. Baulieu, H. Kanno and I. Singer, Special quantum field theories in eight-dimensions and other dimensions, Commun. Math. Phys. 194 (1998) 149 [hep-th/9704167] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. S.K. Donaldson and R.P. Thomas, Gauge theory in higher dimensions, in The geometric universe, Oxford University Press, Oxford U.K. (1998).

  35. S. Donaldson and E. Segal, Gauge theory in higher dimensions, II, arXiv:0902.3239 [INSPIRE].

  36. A.D. Popov, Non-abelian vortices, super-Yang-Mills theory and Spin(7)-instantons, Lett. Math. Phys. 92 (2010) 253 [arXiv:0908.3055] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. D. Harland and A.D. Popov, Yang-Mills fields in flux compactifications on homogeneous manifolds with SU(4)-structure, JHEP 02 (2012) 107 [arXiv:1005.2837] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A.D. Popov and R.J. Szabo, Double quiver gauge theory and nearly Kähler flux compactifications, JHEP 02 (2012) 033 [arXiv:1009.3208] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Fairlie and J. Nuyts, Spherically symmetric solutions of gauge theories in eight-dimensions, J. Phys. A 17 (1984) 2867 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. E. Corrigan, P. Goddard and A. Kent, Some comments on the ADHM construction in 4k-dimensions, Commun. Math. Phys. 100 (1985) 1 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. S. Fubini and H. Nicolai, The octonionic instanton, Phys. Lett. B 155 (1985) 369 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. T.A. Ivanova and A.D. Popov, Self-dual Yang-Mills fields in d = 7, 8, octonions and Ward equations, Lett. Math. Phys. 24 (1992) 85 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. T.A. Ivanova and A.D. Popov, (Anti-)self-dual gauge fields in dimension D ≥ 4, Theor. Math. Phys. 94 (1993) 225 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  44. M. Günaydin and H. Nicolai, Seven-dimensional octonionic Yang-Mills instanton and its extension to an heterotic string soliton, Phys. Lett. B 351 (1995) 169 [Addendum ibid. B 376 (1996) 329] [hep-th/9502009] [INSPIRE].

  45. A.D. Popov, Hermitian Yang-Mills equations and pseudo-holomorphic bundles on nearly Kähler and nearly Calabi-Yau twistor 6-manifolds, Nucl. Phys. B 828 (2010) 594 [arXiv:0907.0106] [INSPIRE].

    Article  ADS  Google Scholar 

  46. D. Harland, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Yang-Mills flows on nearly Kähler manifolds and G 2 -instantons, Commun. Math. Phys. 300 (2010) 185 [arXiv:0909.2730] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. F.P. Correia, Hermitian Yang-Mills instantons on Calabi-Yau cones, JHEP 12 (2009) 004 [arXiv:0910.1096] [INSPIRE].

    Article  Google Scholar 

  48. I. Bauer, T.A. Ivanova, O. Lechtenfeld and F. Lubbe, Yang-Mills instantons and dyons on homogeneous G 2 -manifolds, JHEP 10 (2010) 044 [arXiv:1006.2388] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. F.P. Correia, Hermitian Yang-Mills instantons on resolutions of Calabi-Yau cones, JHEP 02 (2011) 054 [arXiv:1009.0526] [INSPIRE].

    Article  Google Scholar 

  50. A.S. Haupt, T.A. Ivanova, O. Lechtenfeld and A.D. Popov, Chern-Simons flows on Aloff-Wallach spaces and Spin(7)-instantons, Phys. Rev. D 83 (2011) 105028 [arXiv:1104.5231] [INSPIRE].

    ADS  Google Scholar 

  51. K.-P. Gemmer, O. Lechtenfeld, C. Nölle and A.D. Popov, Yang-Mills instantons on cones and sine-cones over nearly Kähler manifolds, JHEP 09 (2011) 103 [arXiv:1108.3951] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Dunajski and M. Hoegner, SU(2) solutions to self-duality equations in eight dimensions, J. Geom. Phys. 62 (2012) 1747 [arXiv:1109.4537] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. T.A. Ivanova and A.D. Popov, Instantons on special holonomy manifolds, Phys. Rev. D 85 (2012) 105012 [arXiv:1203.2657] [INSPIRE].

    ADS  Google Scholar 

  54. D.E. Blair, Contact manifolds and Riemannian geometry, Springer Verlag, Berlin Germany (1976).

    Google Scholar 

  55. D.E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhäuser, Boston U.S.A. (2010).

    Book  MATH  Google Scholar 

  56. C.P. Boyer and K. Galicki, Sasakian geometry, holonomy and supersymmetry, math/0703231 [INSPIRE].

  57. J. Sparks, Sasaki-Einstein manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].

    MathSciNet  Google Scholar 

  58. N. Woodhouse, Real methods in twistor theory, Class. Quant. Grav. 2 (1985) 257 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. C.R. LeBrun, Twistor CR manifolds and three-dimensional conformal geometry, Trans. Amer. Math. Soc. 284 (1984) 601.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Dunajski and P. Tod, Paraconformal geometry of nth order ODEs and exotic holonomy in dimension four, J. Geom. Phys. 56 (2006) 1790 [math/0502524] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. L. Vezzoni, Connections on contact manifolds and contact twistor space, Isr. J. Math. 178 (2010) 253.

    Article  MathSciNet  MATH  Google Scholar 

  62. A.D. Popov, Self-dual Yang-Mills: symmetries and moduli space, Rev. Math. Phys. 11 (1999) 1091 [hep-th/9803183] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  63. M. Wolf, On hidden symmetries of a super gauge theory and twistor string theory, JHEP 02 (2005) 018 [hep-th/0412163] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Wolf, Twistors and aspects of integrability of self-dual SYM theory, hep-th/0511230 [INSPIRE].

  65. A.D. Popov and M. Wolf, Hidden symmetries and integrable hierarchy of the \( \mathcal{N} = {4} \) supersymmetric Yang-Mills equations, Commun. Math. Phys. 275 (2007) 685 [hep-th/0608225] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. K. Pohlmeyer, On the Lagrangian theory of anti(-self-)dual fields in four-dimensional Euclidean space, Commun. Math. Phys. 72 (1980) 37 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. L. Dolan, Kac-Moody algebras and exact solvability in hadronic physics, Phys. Rept. 109 (1984) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. A.D. Popov and C.R. Preitschopf, Extended conformal symmetries of the self-dual Yang-Mills equations, Phys. Lett. B 374 (1996) 71 [hep-th/9512130] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  69. T.A. Ivanova, On current algebra of symmetries of the selfdual Yang-Mills equations, J. Math. Phys. 39 (1998) 79 [hep-th/9702144] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. M. Wolf, A connection between twistors and superstring σ-models on coset superspaces, JHEP 09 (2009) 071 [arXiv:0907.3862] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979) 329.

    Article  MathSciNet  MATH  Google Scholar 

  72. S.A. Merkulov, Paraconformal supermanifolds and nonstandard \( \mathcal{N} \) extended supergravity models, Class. Quant. Grav. 8 (1991) 557 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. S.A. Merkulov, Supersymmetric non-linear graviton, Func. Anal. Appl. 26 (1992) 69.

    Article  MathSciNet  Google Scholar 

  74. S.A. Merkulov, Simple supergravity, supersymmetric nonlinear gravitons and supertwistor theory, Class. Quant. Grav. 9 (1992) 2369 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. S.A. Merkulov, Quaternionic, quaternionic Kähler, and hyper-Kähler supermanifolds, Lett. Math. Phys. 25 (1992) 7.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. A.D. Popov and C. Sämann, On supertwistors, the Penrose-Ward transform and \( \mathcal{N} = {4} \) super Yang-Mills theory, Adv. Theor. Math. Phys. 9 (2005) 931 [hep-th/0405123] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  78. N. Berkovits and E. Witten, Conformal supergravity in twistor-string theory, JHEP 08 (2004) 009 [hep-th/0406051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. R. Boels, L. Mason and D. Skinner, Supersymmetric gauge theories in twistor space, JHEP 02 (2007) 014 [hep-th/0604040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. M. Wolf, Self-dual supergravity and twistor theory, Class. Quant. Grav. 24 (2007) 6287 [arXiv:0705.1422] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  81. L. Mason and M. Wolf, Twistor actions for self-dual supergravities, Commun. Math. Phys. 288 (2009) 97 [arXiv:0706.1941] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. P.S. Howe, Supergravity in superspace, Nucl. Phys. B 199 (1982) 309 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wolf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M. Contact manifolds, contact instantons, and twistor geometry. J. High Energ. Phys. 2012, 74 (2012). https://doi.org/10.1007/JHEP07(2012)074

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)074

Keywords

Navigation