Skip to main content
Log in

Homogeneous Integrable Legendrian Contact Structures in Dimension Five

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider Legendrian contact structures on odd-dimensional complex analytic manifolds. We are particularly interested in integrable structures, which can be encoded by compatible complete systems of second order PDEs on a scalar function of many independent variables and considered up to point transformations. Using the techniques of parabolic differential geometry, we compute the associated regular, normal Cartan connection and give explicit formulas for the harmonic part of the curvature. The PDE system is trivializable by means of point transformations if and only if the harmonic curvature vanishes identically. In dimension five, the harmonic curvature takes the form of a binary quartic field, so there is a Petrov classification based on its root type. We give a complete local classification of all five-dimensional integrable Legendrian contact structures whose symmetry algebra is transitive on the manifold and has at least one-dimensional isotropy algebra at any point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. One inadvertent omission from Cartan’s list was recently discovered in [10].

  2. In terms of \(\mathfrak {sl}_4\) fundamental weights \(\{ \lambda _i \}\), \({\mathbb {W}}\) has lowest weight \(3\lambda _1 - 4\lambda _2 + 3\lambda _3 = \alpha _1 - \alpha _2 + \alpha _3\) by the “minus lowest weight” convention [1].

  3. This normalization is always possible working over \({{\mathbb {C}}}\), but over \({\mathbb {R}}\) we would have two possibilities: \(A = \pm {\mathsf {s}}^4\).

  4. Implicitly, this trichotomy depends on \(B_3\) and \(B_7\) have locally constant type, i.e., the stated invariant conditions are true locally. For (multiply) transitive structures, this is always true.

  5. The latter two correspond to \((\mathsf {r}, \mathsf {s}) \mapsto (\mathsf {r}, -\mathsf {s})\) and \((\mathsf {r}, \mathsf {s}) \mapsto (-\mathsf {s}, \mathsf {r})\).

References

  1. Baston, R.J., Eastwood, M.G.: The Penrose Transform: Its Interaction with Representation Theory, Oxford Mathematical Monographs. Clarendon Press, Oxford (1989)

    MATH  Google Scholar 

  2. Bol, G.: Über topologische Invarianten von zwei Kurvenscharen in Raum. Abhandlungen Math. Sem. Univ. Hamburg. 9(1), 15–47 (1932)

    Article  Google Scholar 

  3. Čap, A.: Correspondence spaces and twistor spaces for parabolic geometries. J. Reine Angew. Math. 582, 143–172 (2005)

    Article  MathSciNet  Google Scholar 

  4. Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, vol. 154. American Mathematical Society, Providence (2009)

    Book  Google Scholar 

  5. Cartan, É.: Les systèmes de Pfaff à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. Éc. Norm. Supér. (3) 27, 109–192 (1910)

    Article  Google Scholar 

  6. Cartan, É.: Sur les variétes à connexion projective. Bull. Soc. Math. Fr. 52, 205–241 (1924)

    Article  Google Scholar 

  7. Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. Ann. Mat. Pura Appl. 11, 17–90 (1932)

    Article  Google Scholar 

  8. Cartan, É.: Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes II. Ann. Sci. Norm. Super. Pisa 4, 333–354 (1932)

    MATH  Google Scholar 

  9. Cartan, É.: Sur les domaines bornés homogènes de l’espace de \(n\) variables complexes. Abh. Math. Sere. Hamburg 11/12, 116–162 (1935)

    Article  Google Scholar 

  10. Doubrov, B., Govorov, A.: A new example of a generic 2-distribution on a 5-manifold with large symmetry algebra, arXiv:1305.7297 (2013)

  11. Doubrov, B., Medvedev, A., The, D.: Homogeneous Levi non-degenerate hypersurfaces in \(\mathbb{C}^3\), arXiv:1711.02389 (2017)

  12. Gardner, R.B.: The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 58. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1989)

  13. Gaussier, H., Merker, J.: Symmetries of partial differential equations. J. Korean Math. Soc. 40(3), 517–561 (2003)

    Article  MathSciNet  Google Scholar 

  14. Kaneyuki, S., Tsuji, T.: Classification of homogeneous bounded domains of lower dimension. Nagoya Math. J. 53, 1–46 (1974)

    Article  MathSciNet  Google Scholar 

  15. Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math. 74(2), 329–387 (1961)

    Article  MathSciNet  Google Scholar 

  16. Kruglikov, B., The, D.: The gap phenomenon in parabolic geometries. J. Reine Angew. Math. 723, 153–215 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Loboda, A.V.: Homogeneous real hypersurfaces in \({\mathbb{C}}^3\) with two-dimensional isotropy groups, Tr. Mat. Inst. Steklova 235 (2001), Anal. i Geom. Vopr. Kompleks. Analiza, 114–142; (Russian) translation in Proc. Steklov Inst. Math. 2001, no. 4 (235), 107–135

  18. Loboda, A.V.: Homogeneous strictly pseudoconvex hypersurfaces in \({\mathbb{C}}^3\) with two-dimensional isotropy groups. Mat. Sb. 192(12), 3–24 (2001); (Russian) translation in Sb. Math. 192 (2001), no. 11–12, 1741–1761

  19. Loboda, A.V.: Determination of a homogeneous strictly pseudoconvex surface from the coefficients of its normal equation. Matematicheskie Zametki 73(3), 453–456 (2003); (Russian) translation in Mathematical Notes, vol. 73, no. 3, 2003, pp. 419–423

  20. Merker, J.: Lie symmetries and CR geometry. Complex analysis. J. Math. Sci. (N. Y.) 154(6), 817–922 (2008)

    Article  MathSciNet  Google Scholar 

  21. Olver, P.J.: Symmetry, invariants, and equivalence. Springer, New York (1995)

    Book  Google Scholar 

  22. Pyatetskii-Shapiro, I.I.: On a problem proposed by E. Cartan. Dokl. Akad. Nauk SSSR 124, 272–273 (1959)

    MathSciNet  MATH  Google Scholar 

  23. Sukhov, A.: Segre varieties and Lie symmetries. Math. Z. 238(3), 483–492 (2001)

    Article  MathSciNet  Google Scholar 

  24. Sukhov, A.: On transformations of analytic CR-structures. Izv. Math. 67(2), 303–332 (2003)

    Article  MathSciNet  Google Scholar 

  25. Takeuchi, M.: Lagrangean contact structures on projective cotangent bundles. Osaka J. Math. 31(4), 837–860 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Tresse, A.: Détermination des invariants ponctuels de l’équation différentielle ordinaire du second ordre \(y^{\prime \prime } = \omega (x,y,y^{\prime })\), Leipzig. 87 S. gr. \(8^\circ \) (1896)

  27. Winkelmann, J.: The Classification of 3-Dimensional Homogeneous Complex Manifolds. Lecture Notes in Math, vol. 1602. Springer, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgements

The Cartan and DifferentialGeometry packages in Maple (written by Jeanne Clelland and Ian Anderson respectively) provided an invaluable framework for implementing the Cartan reduction method and subsequently carrying out the analysis of the structures obtained. The work of the second and third authors was supported by ARC Discovery Grants DP130103485 and DP110100416 respectively. D.T. was also supported by Project M1884-N35 of the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Doubrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Classification Tables

Appendix: Classification Tables

See Tables 9, 10, 11, 12, 13 and 14

Table 9 Classification of type N cases
Table 10 Classification of type D cases
Table 11 Classification of type III cases
Table 12 Basis change from Cartan reduced basis to adapted Lie algebra basis
Table 13 Basis change which reflects redundancy in parameters
Table 14 Duality

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doubrov, B., Medvedev, A. & The, D. Homogeneous Integrable Legendrian Contact Structures in Dimension Five. J Geom Anal 30, 3806–3858 (2020). https://doi.org/10.1007/s12220-019-00219-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-019-00219-x

Keywords

Mathematics Subject Classification

Navigation