Skip to main content
Log in

Inclusive production of a pair of hadrons separated by a large interval of rapidity in proton collisions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider within QCD collinear factorization the inclusive process p + ph 1 + h 2 + X, where the pair of identified hadrons, h 1 , h 2, having large transverse momenta is produced in high-energy proton-proton collisions. In particular, we concentrate on the kinematics where the two identified hadrons in the final state are separated by a large interval of rapidity Δy. In this case the (calculable) hard part of the reaction receives large higher order corrections ∼ \( \alpha_s^n\Delta {y^n} \). We provide a theoretical input for the resummation of such contributions with next-to-leading logarithmic accuracy (NLA) in the BFKL approach. Specifically, we calculate in NLA the vertex (impact-factor) for the inclusive production of the identified hadron. This process has much in common with the widely discussed Mueller-Navelet jets production and can be also used to access the BFKL dynamics at proton colliders. Another application of the obtained identified-hadron vertex could be the NLA BFKL description of inclusive forward hadron production in DIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    ADS  Google Scholar 

  2. E. Kuraev, L. Lipatov and V.S. Fadin, Multi-reggeon processes in the Yang-Mills theory, Zh. Eksp. Teor. Fiz. 71 (1976) 840 [Sov. Phys. JETP 44 (1976) 443] [INSPIRE].

  3. E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Zh. Eksp. Teor. Fiz. 72 (1977) 377 [Sov. Phys. JETP 45 (1977) 199] [INSPIRE].

  4. I. Balitsky and L. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].

    Google Scholar 

  5. V.S. Fadin and R. Fiore, The Generalized nonforward BFKL equation and thebootstrapcondition for the gluon Reggeization in the NLLA, Phys. Lett. B 440 (1998) 359 [hep-ph/9807472] [INSPIRE].

    ADS  Google Scholar 

  6. V.S. Fadin and L. Lipatov, BFKL Pomeron in the next-to-leading approximation, Phys. Lett. B 429 (1998) 127 [hep-ph/9802290] [INSPIRE].

    ADS  Google Scholar 

  7. M. Ciafaloni and G. Camici, Energy scale(s) and next-to-leading BFKL equation, Phys. Lett. B 430 (1998) 349 [hep-ph/9803389] [INSPIRE].

    ADS  Google Scholar 

  8. V. Fadin and R. Fiore, Non-forward BFKL Pomeron at next-to-leading order, Phys. Lett. B 610 (2005) 61 [Erratum ibid. B 621 (2005) 320] [hep-ph/0412386] [INSPIRE].

  9. V. Fadin and R. Fiore, Non-forward NLO BFKL kernel, Phys. Rev. D 72 (2005) 014018 [hep-ph/0502045] [INSPIRE].

    ADS  Google Scholar 

  10. V.S. Fadin, R. Fiore, M. Kotsky and A. Papa, The gluon impact factors, Phys. Rev. D 61 (2000) 094005 [hep-ph/9908264] [INSPIRE].

    ADS  Google Scholar 

  11. V.S. Fadin, R. Fiore, M. Kotsky and A. Papa, The quark impact factors, Phys. Rev. D 61 (2000) 094006 [hep-ph/9908265] [INSPIRE].

    ADS  Google Scholar 

  12. M. Ciafaloni and D. Colferai, K factorization and impact factors at next-to-leading level, Nucl. Phys. B 538 (1999) 187 [hep-ph/9806350] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Bartels, D. Colferai and G. Vacca, The NLO jet vertex for Mueller-Navelet and forward jets: the quark part, Eur. Phys. J. C 24 (2002) 83 [hep-ph/0112283] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Bartels, D. Colferai and G. Vacca, The NLO jet vertex for Mueller-Navelet and forward jets: the gluon part, Eur. Phys. J. C 29 (2003) 235 [hep-ph/0206290] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F. Caporale, D.Y. Ivanov, B. Murdaca, A. Papa and A. Perri, The next-to-leading order jet vertex for Mueller-Navelet and forward jets revisited, JHEP 02 (2012) 101 [arXiv:1112.3752] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D.Y. Ivanov and A. Papa, The next-to-leading order forward jet vertex in the small-cone approximation, JHEP 05 (2012) 086 [arXiv:1202.1082] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Bartels, S. Gieseke and C. Qiao, The (γ *\( q\overline q \)) Reggeon vertex in next-to-leading order QCD, Phys. Rev. D 63 (2001) 056014 [Erratum ibid. D 65 (2002) 079902] [hep-ph/0009102] [INSPIRE].

  18. J. Bartels, S. Gieseke and A. Kyrieleis, The process \( \gamma_{{^L}}^{ * } + q \to \left( {q\overline q g} \right) + q \) : real corrections to the virtual photon impact factor, Phys. Rev. D 65 (2002) 014006 [hep-ph/0107152] [INSPIRE].

    ADS  Google Scholar 

  19. J. Bartels, D. Colferai, S. Gieseke and A. Kyrieleis, NLO corrections to the photon impact factor: Combining real and virtual corrections, Phys. Rev. D 66 (2002) 094017 [hep-ph/0208130] [INSPIRE].

    ADS  Google Scholar 

  20. J. Bartels and A. Kyrieleis, NLO corrections to the γ * impact factor: First numerical results for the real corrections to \( \gamma_{{^L}}^{ * } \), Phys. Rev. D 70 (2004) 114003 [hep-ph/0407051] [INSPIRE].

    ADS  Google Scholar 

  21. V.S. Fadin, D.Y. Ivanov and M. Kotsky, Photon Reggeon interaction vertices in the NLA, Phys. Atom. Nucl. 65 (2002) 1513 [Yad. Fiz. 65 (2002) 1551] [hep-ph/0106099] [INSPIRE].

  22. V. Fadin, D.Y. Ivanov and M. Kotsky, On the calculation of the NLO virtual photon impact factor, Nucl. Phys. B 658 (2003) 156 [hep-ph/0210406] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D.Y. Ivanov, M. Kotsky and A. Papa, The Impact factor for the virtual photon to light vector meson transition, Eur. Phys. J. C 38 (2004) 195 [hep-ph/0405297] [INSPIRE].

    Article  ADS  Google Scholar 

  24. I. Balitsky and G.A. Chirilli, Photon impact factor in the next-to-leading order, Phys. Rev. D 83 (2011) 031502 [arXiv:1009.4729] [INSPIRE].

    ADS  Google Scholar 

  25. J. Bartels, A. De Roeck and H. Lotter, The γ * γ * total cross-section and the BFKL Pomeron at e + e colliders, Phys. Lett. B 389 (1996) 742 [hep-ph/9608401] [INSPIRE].

    ADS  Google Scholar 

  26. S. Brodsky, F. Hautmann and D. Soper, Virtual photon scattering at high-energies as a probe of the short distance Pomeron, Phys. Rev. D 56 (1997) 6957 [hep-ph/9706427] [INSPIRE].

    ADS  Google Scholar 

  27. S. Brodsky, F. Hautmann and D. Soper, Probing the QCD Pomeron in e + e collisions, Phys. Rev. Lett. 78 (1997) 803 [Erratum ibid. 79 (1997) 3544] [hep-ph/9610260] [INSPIRE].

  28. D.Y. Ivanov and A. Papa, Electroproduction of two light vector mesons in the next-to-leading approximation, Nucl. Phys. B 732 (2006) 183 [hep-ph/0508162] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D.Y. Ivanov and A. Papa, Electroproduction of two light vector mesons in next-to-leading BFKL: Study of systematic effects, Eur. Phys. J. C 49 (2007) 947 [hep-ph/0610042] [INSPIRE].

    Article  ADS  Google Scholar 

  30. F. Caporale, A. Papa and A. Sabio Vera, Collinear improvement of the BFKL kernel in the electroproduction of two light vector mesons, Eur. Phys. J. C 53 (2008) 525 [arXiv:0707.4100] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Colferai, F. Schwennsen, L. Szymanowski and S. Wallon, Mueller Navelet jets at LHCcomplete NLL BFKL calculation, JHEP 12 (2010) 026 [arXiv:1002.1365] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A.H. Mueller and H. Navelet, An Inclusive Minijet Cross-Section and the Bare Pomeron in QCD, Nucl. Phys. B 282 (1987) 727 [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Gribov and L. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].

    Google Scholar 

  34. G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics, Sov. Phys. JETP 46 (1977) 641 [INSPIRE].

    ADS  Google Scholar 

  36. R. Kirschner and M. Segond, Small x resummation in collinear factorisation, Eur. Phys. J. C 68 (2010) 425 [arXiv:0910.5443] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Kotikov and L. Lipatov, NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories, Nucl. Phys. B 582 (2000) 19 [hep-ph/0004008] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H1 collaboration, A. Aktas et al., Forward pi0 production and associated transverse energy flow in deep-inelastic scattering at HERA, Eur. Phys. J. C 36 (2004) 441 [hep-ex/0404009] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Papa.

Additional information

ArXiv ePrint: 1205.6068

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, D.Y., Papa, A. Inclusive production of a pair of hadrons separated by a large interval of rapidity in proton collisions. J. High Energ. Phys. 2012, 45 (2012). https://doi.org/10.1007/JHEP07(2012)045

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)045

Keywords

Navigation