Skip to main content
Log in

Exodus: Hidden origin of dark matter and baryons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a new framework for explaining the proximity of the baryon and dark matter relic densities ΩDM ≈ 5Ω B . The scenario assumes that the number density of the observed dark matter states is generated due to decays from a second hidden sector which simultaneously generates the baryon asymmetry. In contrast to asymmetric dark matter models, the dark matter can be a real scalar or Majorana fermion and thus presents distinct phenomenology. We discuss aspects of model building and general constraints in this framework. Moreover, we argue that this scenario circumvents several of the experimental bounds which significantly constrain typical models of asymmetric dark matter. We present a simple supersymmetric implementation of this mechanism and show that it can be used to obtain the correct dark matter relic density for a bino LSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. von Harling and A. Hebecker, Sequestered Dark Matter, JHEP 05 (2008) 031 [arXiv:0801.4015] [INSPIRE].

    Article  ADS  Google Scholar 

  2. X. Chen and S.-H.H. Tye, Heating in brane inflation and hidden dark matter, JCAP 06 (2006) 011 [hep-th/0602136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Hebecker and J. March-Russell, The Ubiquitous throat, Nucl. Phys. B 781 (2007) 99 [hep-th/0607120] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. M. Berg, D. Marsh, L. McAllister and E. Pajer, Sequestering in String Compactifications, JHEP 06 (2011) 134 [arXiv:1012.1858] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Craig, J. March-Russell and M. McCullough, The Goldstini Variations, JHEP 10 (2010) 095 [arXiv:1007.1239] [INSPIRE].

    Article  ADS  Google Scholar 

  6. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic Dark Matter, JCAP 05 (2010) 021 [arXiv:0909.0753] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Shelton and K.M. Zurek, Darkogenesis: A baryon asymmetry from the dark matter sector, Phys. Rev. D 82 (2010) 123512 [arXiv:1008.1997] [INSPIRE].

    ADS  Google Scholar 

  9. N. Haba and S. Matsumoto, Baryogenesis from Dark Sector, Prog. Theor. Phys. 125 (2011) 1311 [arXiv:1008.2487] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M.R. Buckley and L. Randall, Xogenesis, JHEP 09 (2011) 009 [arXiv:1009.0270] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Blennow, B. Dasgupta, E. Fernandez-Martinez and N. Rius, Aidnogenesis via Leptogenesis and Dark Sphalerons, JHEP 03 (2011) 014 [arXiv:1009.3159] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S. Nussinov, Technocosmology: could a technibaryon excess provide anaturalmissing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].

    ADS  Google Scholar 

  13. R.S. Chivukula and T.P. Walker, Technicolor Cosmology, Nucl. Phys. B 329 (1990) 445 [INSPIRE].

    Article  ADS  Google Scholar 

  14. S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].

    ADS  Google Scholar 

  15. D.B. Kaplan, A Single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Hooper, J. March-Russell and S.M. West, Asymmetric sneutrino dark matter and the Omega(b)/Omega(DM) puzzle, Phys. Lett. B 605 (2005) 228 [hep-ph/0410114] [INSPIRE].

    ADS  Google Scholar 

  17. R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].

    ADS  Google Scholar 

  18. N. Cosme, L. Lopez Honorez and M.H. Tytgat, Leptogenesis and dark matter related?, Phys. Rev. D 72 (2005) 043505 [hep-ph/0506320] [INSPIRE].

    ADS  Google Scholar 

  19. G.R. Farrar and G. Zaharijas, Dark matter and the baryon asymmetry, Phys. Rev. Lett. 96 (2006) 041302 [hep-ph/0510079] [INSPIRE].

    Article  ADS  Google Scholar 

  20. D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].

    ADS  Google Scholar 

  21. B. Dutta and J. Kumar, Asymmetric Dark Matter from Hidden Sector Baryogenesis, Phys. Lett. B 699 (2011) 364 [arXiv:1012.1341] [INSPIRE].

    ADS  Google Scholar 

  22. M.T. Frandsen, S. Sarkar and K. Schmidt-Hoberg, Light asymmetric dark matter from new strong dynamics, Phys. Rev. D 84 (2011) 051703 [arXiv:1103.4350] [INSPIRE].

    ADS  Google Scholar 

  23. Y. Cui, L. Randall and B. Shuve, Emergent Dark Matter, Baryon and Lepton Numbers, JHEP 08 (2011) 073 [arXiv:1106.4834] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C. Cheung and K.M. Zurek, Affleck-Dine Cogenesis, Phys. Rev. D 84 (2011) 035007 [arXiv:1105.4612] [INSPIRE].

    ADS  Google Scholar 

  25. J. March-Russell and M. McCullough, Asymmetric Dark Matter via Spontaneous Co-Genesis, JCAP 03 (2012) 019 [arXiv:1106.4319] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.J. Heckman and S.-J. Rey, Baryon and Dark Matter Genesis from Strongly Coupled Strings, JHEP 06 (2011) 120 [arXiv:1102.5346] [INSPIRE].

    Article  ADS  Google Scholar 

  27. C. Arina and N. Sahu, Asymmetric Inelastic Inert Doublet Dark Matter from Triplet Scalar Leptogenesis, Nucl. Phys. B 854 (2012) 666 [arXiv:1108.3967] [INSPIRE].

    Article  ADS  Google Scholar 

  28. C. Arina, R.N. Mohapatra and N. Sahu, Co-genesis of Matter and Dark Matter with Vector-like Fourth Generation Leptons, Phys. Lett. B 720 (2013) 130 [arXiv:1211.0435] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. P.-H. Gu, M. Lindner, U. Sarkar and X. Zhang, WIMP Dark Matter and Baryogenesis, Phys. Rev. D 83 (2011) 055008 [arXiv:1009.2690] [INSPIRE].

    ADS  Google Scholar 

  30. P.-H. Gu, From Dirac neutrino masses to baryonic and dark matter asymmetries, Nucl. Phys. B 872 (2013) 38 [arXiv:1209.4579] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L.J. Hall, J. March-Russell and S.M. West, A Unified Theory of Matter Genesis: Asymmetric Freeze-In, arXiv:1010.0245 [INSPIRE].

  32. H. Davoudiasl, D.E. Morrissey, K. Sigurdson and S. Tulin, Hylogenesis: A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter, Phys. Rev. Lett. 105 (2010) 211304 [arXiv:1008.2399] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Davoudiasl and R.N. Mohapatra, On Relating the Genesis of Cosmic Baryons and Dark Matter, New J. Phys. 14 (2012) 095011 [arXiv:1203.1247] [INSPIRE].

    Article  ADS  Google Scholar 

  34. F. D’Eramo, L. Fei and J. Thaler, Dark Matter Assimilation into the Baryon Asymmetry, JCAP 03 (2012) 010 [arXiv:1111.5615] [INSPIRE].

    Article  Google Scholar 

  35. G. Kane, J. Shao, S. Watson and H.-B. Yu, The Baryon-Dark Matter Ratio Via Moduli Decay After Affleck-Dine Baryogenesis, JCAP 11 (2011) 012 [arXiv:1108.5178] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.D. Thomas, Baryons and dark matter from the late decay of a supersymmetric condensate, Phys. Lett. B 356 (1995) 256 [hep-ph/9506274] [INSPIRE].

    ADS  Google Scholar 

  37. Z. Kang and T. Li, Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking, JHEP 10 (2012) 150 [arXiv:1111.7313] [INSPIRE].

    Article  ADS  Google Scholar 

  38. R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [INSPIRE].

    ADS  Google Scholar 

  39. W. Fischler and W. Tangarife Garcia, Hierarchies of SUSY Splittings and Invisible Photinos as Dark Matter, JHEP 01 (2011) 025 [arXiv:1011.0099] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Sakharov, Violation of CP Invariance, c Asymmetry and Baryon Asymmetry of the Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61] [INSPIRE].

  41. M. Cicoli and A. Mazumdar, Reheating for Closed String Inflation, JCAP 09 (2010) 025 [arXiv:1005.5076] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Cicoli and A. Mazumdar, Inflation in string theory: A Graceful exit to the real world, Phys. Rev. D 83 (2011) 063527 [arXiv:1010.0941] [INSPIRE].

    ADS  Google Scholar 

  43. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D.S. Gorbunov and V.A. Rubakov, Introduction to the theory of the early universe: Hot big bang theory, Hackensack, USA, World Scientific (2011).

  45. E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.

    MathSciNet  ADS  Google Scholar 

  46. L. Chang, O. Lebedev and J. Ng, On the invisible decays of the Upsilon and J/ψ resonances, Phys. Lett. B 441 (1998) 419 [hep-ph/9806487] [INSPIRE].

    ADS  Google Scholar 

  47. P. Fayet, Invisible Upsilon decays into Light Dark Matter, Phys. Rev. D 81 (2010) 054025 [arXiv:0910.2587] [INSPIRE].

    ADS  Google Scholar 

  48. B. McElrath, Invisible quarkonium decays as a sensitive probe of dark matter, Phys. Rev. D 72 (2005) 103508 [hep-ph/0506151] [INSPIRE].

    ADS  Google Scholar 

  49. H. Dreiner, C. Hanhart, U. Langenfeld and D.R. Phillips, Supernovae and light neutralinos: SN1987A bounds on supersymmetry revisited, Phys. Rev. D 68 (2003) 055004 [hep-ph/0304289] [INSPIRE].

    ADS  Google Scholar 

  50. N. Arkani-Hamed, A. Delgado and G. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  51. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

    ADS  Google Scholar 

  52. K. Jedamzik, Did something decay, evaporate, or annihilate during Big Bang nucleosynthesis?, Phys. Rev. D 70 (2004) 063524 [astro-ph/0402344] [INSPIRE].

    ADS  Google Scholar 

  53. M. Reno and D. Seckel, Primordial Nucleosynthesis: The Effects of Injecting Hadrons, Phys. Rev. D 37 (1988) 3441 [INSPIRE].

    ADS  Google Scholar 

  54. M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

    ADS  Google Scholar 

  55. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].

    ADS  Google Scholar 

  57. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    ADS  Google Scholar 

  58. M.R. Buckley and S. Profumo, Regenerating a Symmetry in Asymmetric Dark Matter, Phys. Rev. Lett. 108 (2012) 011301 [arXiv:1109.2164] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. Tulin, H.-B. Yu and K.M. Zurek, Oscillating Asymmetric Dark Matter, JCAP 05 (2012) 013 [arXiv:1202.0283] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Cirelli, P. Panci, G. Servant and G. Zaharijas, Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter, JCAP 03 (2012) 015 [arXiv:1110.3809] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Falkowski, J.T. Ruderman and T. Volansky, Asymmetric Dark Matter from Leptogenesis, JHEP 05 (2011) 106 [arXiv:1101.4936] [INSPIRE].

    Article  ADS  Google Scholar 

  62. T. Gherghetta, Dirac neutrino masses with Planck scale lepton number violation, Phys. Rev. Lett. 92 (2004) 161601 [hep-ph/0312392] [INSPIRE].

    Article  ADS  Google Scholar 

  63. N. Arkani-Hamed and Y. Grossman, Light active and sterile neutrinos from compositeness, Phys. Lett. B 459 (1999) 179 [hep-ph/9806223] [INSPIRE].

    ADS  Google Scholar 

  64. N. Okada and O. Seto, Originally Asymmetric Dark Matter, Phys. Rev. D 86 (2012) 063525 [arXiv:1205.2844] [INSPIRE].

    ADS  Google Scholar 

  65. J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].

    ADS  Google Scholar 

  67. M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric Dark Matter and Dark Radiation, JCAP 07 (2012) 022 [arXiv:1203.5803] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Unwin.

Additional information

ArXiv ePrint: 1212.1425

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unwin, J. Exodus: Hidden origin of dark matter and baryons. J. High Energ. Phys. 2013, 90 (2013). https://doi.org/10.1007/JHEP06(2013)090

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)090

Keywords

Navigation