Skip to main content
Log in

Black hole stereotyping: induced gravito-static polarization

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the black hole effective action and define its static subsector. We determine the induced gravito-static polarization constants (electric Love numbers) of static black holes (Schwarzschild) in an arbitrary dimension, namely the induced mass multipole as a result of an external gravitational field. We demonstrate that in 4d these constants vanish thereby settling a disagreement in the literature. Yet in higher dimensions these constants are non-vanishing, thereby disproving (at least in d > 4) speculations that black holes have no effective couplings beyond the point particle action. In particular, when l/(d−3) is half integral these constants demonstrate a (classical) renormalization flow consistent with the divergences of the effective field theory. In some other cases the constants are negative indicating a novel non-spherical instability. The theory of hypergeometric functions plays a central role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Oxford English dictionary, www.oed.com, retrieved on 12 September 2011.

  2. A.E.H. Love, Some problems of geodynamics, Cambridge University Press, Cambridge U.K. (1911) [Dover, New York U.S.A. (1967)], see also http://en.wikipedia.org/wiki/Augustus_Edward_Hough_Love.

  3. Y.-Z. Chu, W.D. Goldberger and I.Z. Rothstein, Asymptotics of d-dimensional Kaluza-Klein black holes: beyond the Newtonian approximation, JHEP 03 (2006) 013 [hep-th/0602016] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. B. Kol and M. Smolkin, Classical effective field theory and caged black holes, Phys. Rev. D 77 (2008) 064033 [arXiv:0712.2822] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. J.B. Gilmore, A. Ross and M. Smolkin, Caged black hole thermodynamics: Charge, the extremal limit and finite size effects, JHEP 09 (2009) 104 [arXiv:0908.3490] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. K. Schwarzschild, On the gravitational field of a mass point according to Einstein’s theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916 (1916) 189 [physics/9905030] [INSPIRE].

  7. E.E. Flanagan and T. Hinderer, Constraining neutron star tidal Love numbers with gravitational wave detectors, Phys. Rev. D 77 (2008) 021502 [arXiv:0709.1915] [INSPIRE].

    ADS  Google Scholar 

  8. T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev. D 80 (2009) 084035 [arXiv:0906.0096] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev. D 80 (2009) 084018 [arXiv:0906.1366] [INSPIRE].

    ADS  Google Scholar 

  10. T. Damour and O.M. Lecian, On the gravitational polarizability of black holes, Phys. Rev. D 80 (2009) 044017 [arXiv:0906.3003] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. W.D. Goldberger, Les Houches lectures on effective field theories and gravitational radiation, hep-ph/0701129 [INSPIRE].

  13. T. Damour and G. Esposito-Farese, Testing gravity to second postNewtonian order: a field theory approach, Phys. Rev. D 53 (1996) 5541 [gr-qc/9506063] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. V. Asnin, D. Gorbonos, S. Hadar, B. Kol, M. Levi and U. Miyamoto, High and low dimensions in the black hole negative mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. B. Kol and E. Sorkin, On black-brane instability in an arbitrary dimension, Class. Quant. Grav. 21 (2004) 4793 [gr-qc/0407058] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. B. Kol, The delocalized effective degrees of freedom of a black hole at low frequencies, Gen. Rel. Grav. 40 (2008) 2061 [arXiv:0804.0187] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. B. Kol and M. Smolkin, Non-relativistic gravitation: from Newton to Einstein and back, Class. Quant. Grav. 25 (2008) 145011 [arXiv:0712.4116] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. H. Kodama and A. Ishibashi, A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys. 110 (2003) 701 [hep-th/0305147] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Ishibashi and H. Kodama, Stability of higher dimensional Schwarzschild black holes, Prog. Theor. Phys. 110 (2003) 901 [hep-th/0305185] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Beals and R. Wong, Special functions, Cambridge University Press, Cambridge U.K. (2010).

    MATH  Google Scholar 

  22. F.J. Zerilli, Effective potential for even parity Regge-Wheeler gravitational perturbation equations, Phys. Rev. Lett. 24 (1970) 737 [INSPIRE].

    Article  ADS  Google Scholar 

  23. V. Asnin and B. Kol, Dynamical versus auxiliary fields in gravitational waves around a black hole, Class. Quant. Grav. 24 (2007) 4915 [hep-th/0703283] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. B. Kol, Perturbations around backgrounds with one non-homogeneous dimension, hep-th/0609001 [INSPIRE].

  25. D. Gorbonos and B. Kol, A dialogue of multipoles: matched asymptotic expansion for caged black holes, JHEP 06 (2004) 053 [hep-th/0406002] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. I. Vega, E. Poisson and R. Massey, Intrinsic and extrinsic geometries of a tidally deformed black hole, Class. Quant. Grav. 28 (2011) 175006 [arXiv:1106.0510] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. B. Kol and M. Smolkin, Dressing the post-Newtonian two-body problem and classical effective field theory, Phys. Rev. D 80 (2009) 124044 [arXiv:0910.5222] [INSPIRE].

    ADS  Google Scholar 

  29. W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev. D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Smolkin.

Additional information

ArXiv ePrint: 1110.3764

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kol, B., Smolkin, M. Black hole stereotyping: induced gravito-static polarization. J. High Energ. Phys. 2012, 10 (2012). https://doi.org/10.1007/JHEP02(2012)010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)010

Keywords

Navigation