Skip to main content
Log in

A doubly rotating black ring with dipole charge

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a dipole-charged generalisation of the Pomeransky-Sen’kov black ring in five-dimensional Kaluza-Klein theory. It rotates in two independent directions, although one of the rotations has been tuned to achieve balance, so that the space-time does not contain any conical singularities. This solution was constructed using the inverse-scattering method in six-dimensional vacuum gravity. We then study various physical properties of this solution, with particular emphasis on the new features that the dipole charge introduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. R.C. Myers and M. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. T. Mishima and H. Iguchi, New axisymmetric stationary solutions of five-dimensional vacuum Einstein equations with asymptotic flatness, Phys. Rev. D 73 (2006) 044030 [hep-th/0504018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. P. Figueras, A black ring with a rotating 2-sphere, JHEP 07 (2005) 039 [hep-th/0505244] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. A. Pomeransky and R. Sen’kov, Black ring with two angular momenta, hep-th/0612005 [INSPIRE].

  6. Y. Morisawa, S. Tomizawa and Y. Yasui, Boundary value problem for black rings, Phys. Rev. D 77 (2008) 064019 [arXiv:0710.4600] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  7. Y. Chen, K. Hong and E. Teo, Unbalanced Pomeransky-Senkov black ring, Phys. Rev. D 84 (2011) 084030 [arXiv:1108.1849] [INSPIRE].

    ADS  Google Scholar 

  8. H. Elvang, A charged rotating black ring, Phys. Rev. D 68 (2003) 124016 [hep-th/0305247] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. H. Elvang and R. Emparan, Black rings, supertubes and a stringy resolution of black hole nonuniqueness, JHEP 11 (2003) 035 [hep-th/0310008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. A. Bouchareb et al., G 2 generating technique for minimal D = 5 supergravity and black rings, Phys. Rev. D 76 (2007) 104032 [Erratum ibid. D 78 (2008) 029901] [arXiv:0708.2361] [INSPIRE].

  11. J. Hoskisson, A charged doubly spinning black ring, Phys. Rev. D 79 (2009) 104022 [arXiv:0808.3000] [INSPIRE].

    ADS  Google Scholar 

  12. D.V. Gal’tsov and N.G. Scherbluk, Three-charge doubly rotating black ring, Phys. Rev. D 81 (2010) 044028 [arXiv:0912.2771] [INSPIRE].

    ADS  Google Scholar 

  13. F. Dowker, J.P. Gauntlett, G.W. Gibbons and G.T. Horowitz, Nucleation of p-branes and fundamental strings, Phys. Rev. D 53 (1996) 7115 [hep-th/9512154] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. R. Emparan, Rotating circular strings and infinite nonuniqueness of black rings, JHEP 03 (2004) 064 [hep-th/0402149] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S.S. Yazadjiev, Completely integrable sector in 5D Einstein-Maxwell gravity and derivation of the dipole black ring solutions, Phys. Rev. D 73 (2006) 104007 [hep-th/0602116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. S.S. Yazadjiev, Solution generating in 5D Einstein-Maxwell-dilaton gravity and derivation of dipole black ring solutions, JHEP 07 (2006) 036 [hep-th/0604140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. V. Belinski and E. Verdaguer, Gravitational solitons, Cambridge University Press, Cambridge U.K. (2001).

    Book  MATH  Google Scholar 

  18. A.A. Pomeransky, Complete integrability of higher-dimensional Einstein equations with additional symmetry and rotating black holes, Phys. Rev. D 73 (2006) 044004 [hep-th/0507250] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. R. Emparan and H.S. Reall, Black holes in higher dimensions, Living Rev. Rel. 11 (2008) 6 [arXiv:0801.3471] [INSPIRE].

    Google Scholar 

  20. H. Iguchi, K. Izumi and T. Mishima, Systematic solution-generation of five-dimensional black holes, Prog. Theor. Phys. Suppl. 189 (2011) 93 [arXiv:1106.0387] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Figueras, E. Jamsin, J.V. Rocha and A. Virmani, Integrability of five dimensional minimal supergravity and charged rotating black holes, Class. Quant. Grav. 27 (2010) 135011 [arXiv:0912.3199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. J.V. Rocha, M.J. Rodriguez and A. Virmani, Inverse scattering construction of a dipole black ring, JHEP 11 (2011) 008 [arXiv:1108.3527] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Copsey and G.T. Horowitz, The role of dipole charges in black hole thermodynamics, Phys. Rev. D 73 (2006) 024015 [hep-th/0505278] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. D. Astefanesei and E. Radu, Quasilocal formalism and black ring thermodynamics, Phys. Rev. D 73 (2006) 044014 [hep-th/0509144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. R. Emparan and H.S. Reall, Generalized Weyl solutions, Phys. Rev. D 65 (2002) 084025 [hep-th/0110258] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. Y. Chen and E. Teo, Rod-structure classification of gravitational instantons with U(1) × U(1) isometry, Nucl. Phys. B 838 (2010) 207 [arXiv:1004.2750] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. Y. Chen and E. Teo, Black holes on gravitational instantons, Nucl. Phys. B 850 (2011) 253 [arXiv:1011.6464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. T. Harmark, Stationary and axisymmetric solutions of higher-dimensional general relativity, Phys. Rev. D 70 (2004) 124002 [hep-th/0408141] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. G. Gibbons and D. Wiltshire, Black holes in Kaluza-Klein theory, Annals Phys. 167 (1986) 201 [Erratum ibid. 176 (1987) 393] [INSPIRE].

  31. D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. H. Elvang and M.J. Rodriguez, Bicycling black rings, JHEP 04 (2008) 045 [arXiv:0712.2425] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. H.S. Reall, Counting the microstates of a vacuum black ring, JHEP 05 (2008) 013 [arXiv:0712.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [INSPIRE].

    Article  ADS  Google Scholar 

  35. H. Elvang, R. Emparan and P. Figueras, Non-supersymmetric black rings as thermally excited supertubes, JHEP 02 (2005) 031 [hep-th/0412130] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Teo.

Additional information

ArXiv ePrint: 1204.5785

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Hong, K. & Teo, E. A doubly rotating black ring with dipole charge. J. High Energ. Phys. 2012, 148 (2012). https://doi.org/10.1007/JHEP06(2012)148

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)148

Keywords

Navigation