Skip to main content
Log in

Feynman rules for the rational part of one-loop QCD corrections in the MSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The complete set of Feynman rules for the rational part R of QCD corrections in the MSSM are calculated at the one-loop level, which can be very useful in the nextto-leading order calculations in supersymmetric models. Our results are expressed in the ’t Hooft-Veltman regularization scheme and in the Four Dimensional Helicity scheme with non-anticommutating and anticommutating γ5 strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

    ADS  Google Scholar 

  2. P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].

    ADS  Google Scholar 

  3. P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].

    ADS  Google Scholar 

  4. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    ADS  Google Scholar 

  5. N. Sakai, Naturalness in Supersymmetric Guts, Z. Phys. C 11 (1981) 153 [INSPIRE].

    ADS  Google Scholar 

  6. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Low-Energy Parameters and Particle Masses in a Supersymmetric Grand Unified Model, Prog. Theor. Phys. 67 (1982) 1889 [INSPIRE].

    ADS  Google Scholar 

  7. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Aspects of Grand Unified Models with Softly Broken Supersymmetry, Prog. Theor. Phys. 68 (1982) 927 [Erratum ibid. 70 (1983) 330] [INSPIRE].

    ADS  Google Scholar 

  8. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Renormalization of Supersymmetry Breaking Parameters Revisited, Prog. Theor. Phys. 71 (1984) 413 [INSPIRE].

    ADS  Google Scholar 

  9. F.A. Berends and W. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].

    ADS  Google Scholar 

  10. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. T. Stelzer and W. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].

    ADS  Google Scholar 

  13. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Google Scholar 

  14. A. Pukhov et al., CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].

  15. F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A Matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].

    ADS  Google Scholar 

  16. F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [INSPIRE].

    ADS  Google Scholar 

  17. F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A New approach to multijet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [INSPIRE].

    ADS  Google Scholar 

  18. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].

    ADS  Google Scholar 

  19. A. Kanaki and C.G. Papadopoulos, HELAC: A Package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].

    ADS  MATH  Google Scholar 

  20. A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: A Generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].

    ADS  Google Scholar 

  21. T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    ADS  Google Scholar 

  22. B. Harris and J. Owens, The Two cutoff phase space slicing method, Phys. Rev. D 65 (2002) 094032 [hep-ph/0102128] [INSPIRE].

    ADS  Google Scholar 

  23. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

    ADS  Google Scholar 

  24. S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The Dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].

    ADS  Google Scholar 

  25. S. Dittmaier, A General approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

    ADS  Google Scholar 

  26. L. Phaf and S. Weinzierl, Dipole formalism with heavy fermions, JHEP 04 (2001) 006 [hep-ph/0102207] [INSPIRE].

    ADS  Google Scholar 

  27. M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the Dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].

    ADS  Google Scholar 

  28. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    ADS  Google Scholar 

  29. S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

    ADS  Google Scholar 

  30. D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].

    ADS  Google Scholar 

  31. G. Somogyi, Subtraction with hadronic initial states at NLO: An NNLO-compatible scheme, JHEP 05 (2009) 016 [arXiv:0903.1218] [INSPIRE].

    ADS  Google Scholar 

  32. K. Hasegawa, S. Moch and P. Uwer, AutoDipole: Automated generation of dipole subtraction terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  33. R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].

    ADS  Google Scholar 

  34. R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].

    ADS  Google Scholar 

  35. G. Passarino and M. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    ADS  Google Scholar 

  36. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  37. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    ADS  Google Scholar 

  38. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].

    ADS  Google Scholar 

  39. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].

    ADS  Google Scholar 

  41. Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys. B 437 (1995) 259 [hep-ph/9409393] [INSPIRE].

    ADS  Google Scholar 

  42. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, arXiv:1105.4319 [INSPIRE].

  44. F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [INSPIRE].

    Google Scholar 

  45. R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [INSPIRE].

  46. G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP 07 (2007) 085 [arXiv:0704.1271] [INSPIRE].

    ADS  Google Scholar 

  48. G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].

    ADS  Google Scholar 

  49. P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the Reduction of One-Loop Amplitudes, JHEP 06 (2008) 030 [arXiv:0803.3964] [INSPIRE].

    ADS  Google Scholar 

  50. G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. A. Denner, S. Dittmaier, M. Roth and L. Wieders, Electroweak corrections to charged-current e + e  → 4 fermion processes: Technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

    ADS  Google Scholar 

  52. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to ttbb production at the LHC: 1. Quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [INSPIRE].

    ADS  Google Scholar 

  53. A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD Corrections to Top Anti-Top Bottom Anti-Bottom Production at the LHC: 2. full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].

    ADS  Google Scholar 

  54. T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [INSPIRE].

    ADS  Google Scholar 

  55. M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes in the R ξ gauge and in the Unitary gauge, JHEP 01 (2011) 029 [arXiv:1009.4302] [INSPIRE].

    ADS  Google Scholar 

  56. M. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the Electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 1010 (2010) 097] [arXiv:0910.3130] [INSPIRE].

    ADS  Google Scholar 

  57. P. Draggiotis, M. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman Rules for the Rational Part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. M. Garzelli and I. Malamos, R2SM: A Package for the analytic computation of the R 2 Rational terms in the Standard Model of the Electroweak interactions, Eur. Phys. J. C 71 (2011) 1605 [arXiv:1010.1248] [INSPIRE].

    ADS  Google Scholar 

  59. H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman Rules for the Rational Part of the Standard Model One-loop Amplitudes in thet Hooft-Veltman γ5 Scheme, JHEP 09 (2011) 048 [arXiv:1106.5030] [INSPIRE].

    ADS  Google Scholar 

  60. F. Campanario, Towards pp → V V jj at NLO QCD: Bosonic contributions to triple vector boson production plus jet, JHEP 10 (2011) 070 [arXiv:1105.0920] [INSPIRE].

    ADS  Google Scholar 

  61. R. Pittau, Primary Feynman rules to calculate the epsilon-dimensional integrand of any 1-loop amplitude, JHEP 02 (2012) 029 [arXiv:1111.4965] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  62. R. Boels and C. Schwinn, CSW rules for a massive scalar, Phys. Lett. B 662 (2008) 80 [arXiv:0712.3409] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  63. E. Nigel Glover and C. Williams, One-Loop Gluonic Amplitudes from Single Unitarity Cuts, JHEP 12 (2008) 067 [arXiv:0810.2964] [INSPIRE].

    Google Scholar 

  64. H. Elvang, D.Z. Freedman and M. Kiermaier, Integrands for QCD rational terms and N =4 SYM from massive CSW rules,JHEP 06(2012) 015 [arXiv:1111.0635] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  65. V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].

    ADS  Google Scholar 

  66. R. Pittau, Status of MadLoop/aMC@NLO, arXiv:1202.5781 [INSPIRE].

  67. G. Bevilacqua et al., HELAC-NLO, arXiv:1110.1499 [INSPIRE].

  68. N.D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Google Scholar 

  69. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    ADS  Google Scholar 

  70. G. Cullen et al., Automation of One-Loop Calculations with GoSam: Present Status and Future Outlook, Acta Phys. Polon. B 42 (2011) 2351 [arXiv:1111.3339] [INSPIRE].

    Google Scholar 

  71. G. Cullen et al., Automated One-Loop Calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].

    ADS  Google Scholar 

  72. W. Siegel, Supersymmetric Dimensional Regularization via Dimensional Reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].

    ADS  Google Scholar 

  73. I. Jack, D. Jones and K. Roberts, Equivalence of dimensional reduction and dimensional regularization, Z. Phys. C 63 (1994) 151 [hep-ph/9401349] [INSPIRE].

    ADS  Google Scholar 

  74. Z. Bern and D.A. Kosower, The Computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  75. Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [INSPIRE].

    ADS  Google Scholar 

  76. S. Catani, M. Seymour and Z. Trócsányi, Regularization scheme independence and unitarity in QCD cross-sections, Phys. Rev. D 55 (1997) 6819 [hep-ph/9610553] [INSPIRE].

    ADS  Google Scholar 

  77. Z. Bern, A. De Freitas, L.J. Dixon and H. Wong, Supersymmetric regularization, two loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [INSPIRE].

    ADS  Google Scholar 

  78. G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    ADS  Google Scholar 

  79. C. Bollini and J. Giambiagi, Lowest order divergent graphs in nu-dimensional space, Phys. Lett. B 40 (1972) 566 [INSPIRE].

    ADS  Google Scholar 

  80. G. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimension, Lett. Nuovo Cim. 4 (1972) 329 [INSPIRE].

    Google Scholar 

  81. J. Ashmore, A Method of Gauge Invariant Regularization, Lett. Nuovo Cim. 4 (1972) 289 [INSPIRE].

    Google Scholar 

  82. P. Breitenlohner and D. Maison, Dimensional Renormalization and the Action Principle, Commun. Math. Phys. 52 (1977) 11 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  83. P. Breitenlohner and D. Maison, Dimensionally Renormalized Greens Functions for Theories with Massless Particles. 2., Commun. Math. Phys. 52 (1977) 55 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  84. P. Breitenlohner and D. Maison, Dimensionally Renormalized Greens Functions for Theories with Massless Particles. 1., Commun. Math. Phys. 52 (1977) 39 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  85. G. Bonneau, Consistency in dimensional regularization with γ5, Phys. Lett. B 96 (1980) 147 [INSPIRE].

    ADS  Google Scholar 

  86. G. Bonneau, Preserving canonical ward identities in dimensional regularization with a nonanticommuting γ5, Nucl. Phys. B 177 (1981) 523 [INSPIRE].

    ADS  Google Scholar 

  87. J. Korner, N. Nasrallah and K. Schilcher, Evaluation of the flavor changing vertex b → s + H using the Breitenlohner-Maison-t Hooft-Veltman γ5 scheme, Phys. Rev. D 41 (1990) 888 [INSPIRE].

    ADS  Google Scholar 

  88. D. Kreimer, The Role of γ5 in dimensional regularization, hep-ph/9401354 [INSPIRE].

  89. J. Korner, D. Kreimer and K. Schilcher, A Practicable γ5 scheme in dimensional regularization, Z. Phys. C 54 (1992) 503 [INSPIRE].

    ADS  Google Scholar 

  90. D. Kreimer, The γ5 problem and anomalies: a Clifford algebra approach, Phys. Lett. B 237 (1990) 59 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  91. B. Grinstein, R.P. Springer and M.B. Wise, Effective Hamiltonian for Weak Radiative B Meson Decay, Phys. Lett. B 202 (1988) 138 [INSPIRE].

    ADS  Google Scholar 

  92. R. Grigjanis, P.J. O’Donnell, M. Sutherland and H. Navelet, QCD Corrected Effective Lagrangian for B → s Processes, Phys. Lett. B 213 (1988) 355 [Erratum ibid. B 286 (1992)413] [INSPIRE].

    ADS  Google Scholar 

  93. C. Martin and D. Sánchez-Ruiz, Action principles, restoration of BRS symmetry and the renormalization group equation for chiral nonAbelian gauge theories in dimensional renormalization with a nonanticommuting γ5, Nucl. Phys. B 572 (2000) 387 [hep-th/9905076] [INSPIRE].

    ADS  Google Scholar 

  94. C. Schubert, The Yukawa model as an example for dimensional renormalization with γ5, Nucl. Phys. B 323 (1989) 478 [INSPIRE].

    ADS  Google Scholar 

  95. M. Pernici, M. Raciti and F. Riva, Dimensional renormalization of Yukawa theories via Wilsonian methods, Nucl. Phys. B 577 (2000) 293 [hep-th/9912248] [INSPIRE].

    ADS  Google Scholar 

  96. M. Pernici, Seminaive dimensional renormalization, Nucl. Phys. B 582 (2000) 733 [hep-th/9912278] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  97. M. Pernici and M. Raciti, Axial current in QED and seminaive dimensional renormalization, Phys. Lett. B 513 (2001) 421 [hep-th/0003062] [INSPIRE].

    ADS  Google Scholar 

  98. R. Ferrari, A. Le Yaouanc, L. Oliver and J. Raynal, Gauge invariance and dimensional regularization with γ5 in flavor changing neutral processes, Phys. Rev. D 52 (1995) 3036 [INSPIRE].

    ADS  Google Scholar 

  99. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  MATH  Google Scholar 

  100. T. Hahn and C. Schappacher, The Implementation of the minimal supersymmetric standard model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54 [hep-ph/0105349] [INSPIRE].

    ADS  MATH  Google Scholar 

  101. H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    ADS  Google Scholar 

  102. J. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1., Nucl. Phys. B 272 (1986)1 [Erratum ibid. B 402 (1993) 567] [INSPIRE].

    ADS  Google Scholar 

  103. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunters Guide, SCIPP-89-13.

  104. A. Denner, H. Eck, O. Hahn and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467 [INSPIRE].

    ADS  Google Scholar 

  105. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally Supersymmetric Grand Unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    ADS  Google Scholar 

  106. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge Models with Spontaneously Broken Local Supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  107. L.E. Ibáñez, Locally Supersymmetric SU(5) Grand Unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].

    ADS  Google Scholar 

  108. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of Supersymmetry Breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  109. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  110. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Sheng Shao.

Additional information

ArXiv ePrint: 1205.1273

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, HS., Zhang, YJ. Feynman rules for the rational part of one-loop QCD corrections in the MSSM. J. High Energ. Phys. 2012, 112 (2012). https://doi.org/10.1007/JHEP06(2012)112

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2012)112

Keywords

Navigation