Skip to main content
Log in

Attractive holographic baryons

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We propose a holographic model of baryon interactions based on non-supersymmetric \( {\text{D}}7 - \overline {{\text{D}}7} \) flavor branes embedded in the Klebanov-Strassler background. The baryons are D3-branes wrapping the S 3 of the conifold with M strings connecting the D3 and the flavor branes. Depending on the location of the latter there are two possibilities: the D3 either remains separate from the flavor branes or dissolves in them and becomes a flavor instanton. The leading order interaction between the baryons is a competition between the attraction and the repulsion due to the σ and ω mesons. The lightest 0++ particle σ is a pseudo-Goldstone boson associated with the spontaneous breaking of scale invariance. In a certain range of parameters it is parametrically lighter than any other massive state. As a result at large distances baryons attract each other. At short distances the potential admits a repulsive core due to an exchange of the ω vector meson. We discuss baryon coupling to glueballs, massive mesons and pions and point out the condition for the model to have a small binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-Y. Kim and I. Zahed, Nucleon-nucleon potential from holography, JHEP 03 (2009) 131 [arXiv:0901.0012] [SPIRES].

    Article  ADS  Google Scholar 

  2. K. Hashimoto, T. Sakai and S. Sugimoto, Nuclear force from string theory, Prog. Theor. Phys. 122 (2009) 427 [arXiv:0901.4449] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  3. V.S. Kaplunovsky and J. Sonnenschein, Searching for an attractive force in holographic nuclear physics, JHEP 05 (2011) 058 [arXiv:1003.2621] [SPIRES].

    Article  ADS  Google Scholar 

  4. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  5. S. Kuperstein and J. Sonnenschein, A new holographic model of chiral symmetry breaking, JHEP 09 (2008) 012 [arXiv:0807.2897] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Ihl, M.A.C. Torres, H. Boschi-Filho and C.A.B. Bayona, Scalar and vector mesons of flavor chiral symmetry breaking in the Klebanov-Strassler background, arXiv:1010.0993 [SPIRES].

  8. M. Berg, M. Haack and W. Mueck, Bulk dynamics in confining gauge theories, Nucl. Phys. B 736 (2006) 82 [hep-th/0507285] [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Berg, M. Haack and W. Mueck, Glueballs vs. gluinoballs: fluctuation spectra in non-AdS/non-CFT, Nucl. Phys. B 789 (2008) 1 [hep-th/0612224] [SPIRES].

    Article  ADS  Google Scholar 

  10. A. Dymarsky and D. Melnikov, Gravity multiplet on KS and BB backgrounds, JHEP 05 (2008) 035 [arXiv:0710.4517] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. I. Gordeli and D. Melnikov, On I-even singlet glueballs in the Klebanov-Strassler theory, arXiv:0912.5517 [SPIRES].

  12. J.D. Walecka, A theory of highly condensed matter, Annals Phys. 83 (1974) 491 [SPIRES].

    Article  ADS  Google Scholar 

  13. M. Krasnitz, A two point function in a cascading N = 1 gauge theory from supergravity, hep-th/0011179 [SPIRES].

  14. M. Krasnitz, Correlation functions in a cascading N = 1 gauge theory from supergravity, JHEP 12 (2002) 048 [hep-th/0209163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. M.K. Benna, A. Dymarsky, I.R. Klebanov and A. Solovyov, On normal modes of a warped throat, JHEP 06 (2008) 070 [arXiv:0712.4404] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. A. Dymarsky, D. Melnikov and A. Solovyov, I-odd sector of the Klebanov-Strassler theory, JHEP 05 (2009) 105 [arXiv:0810.5666] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Bianchi and W. de Paula, On exact symmetries and massless vectors in holographic flows and other flux vacua, JHEP 04 (2010) 113 [arXiv:1003.2536] [SPIRES].

    Article  ADS  Google Scholar 

  18. S.S. Pufu,I.R. Klebanov,T. Klose and J. Lin, Green’s functions and non-singlet glueballs on deformed conifolds, J. Phys. A 44 (2011) 055404 [arXiv:1009.2763] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  20. I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Dymarsky, S. Kuperstein and J. Sonnenschein, Chiral symmetry breaking with non-SUSY D7-branes in ISD backgrounds, JHEP 08 (2009) 005 [arXiv:0904.0988] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Kuperstein, Meson spectroscopy from holomorphic probes on the warped deformed conifold, JHEP 03 (2005) 014 [hep-th/0411097] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. O. Mintakevich and J. Sonnenschein, On the spectra of scalar mesons from HQCD models, JHEP 08 (2008) 082 [arXiv:0806.0152] [SPIRES].

    Article  ADS  Google Scholar 

  25. E. Witten, Baryons and branes in Anti de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [SPIRES].

    ADS  Google Scholar 

  26. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Baryons from supergravity, JHEP 07 (1998) 020 [hep-th/9806158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. C.G. CallanJr.,A. Guijosa,K.G. Savvidy and O. Tafjord, Baryons and flux tubes in confining gauge theories from brane actions, Nucl. Phys. B 555 (1999) 183 [hep-th/9902197] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Dynamics of baryons from string theory and vector dominance, JHEP 09 (2007) 063 [arXiv:0705.2632] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. O. Bergman, G. Lifschytz and M. Lippert, Holographic nuclear physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [SPIRES].

    Article  ADS  Google Scholar 

  31. S. Seki and J. Sonnenschein, Comments on baryons in holographic QCD, JHEP 01 (2009) 053 [arXiv:0810.1633] [SPIRES].

    Article  ADS  Google Scholar 

  32. C.P. Herzog, I.R. Klebanov and P. Ouyang, Remarks on the warped deformed conifold, hep-th/0108101 [SPIRES].

  33. E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [hep-th/9410052] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. M.R. Douglas, Branes within branes, hep-th/9512077 [SPIRES].

  36. M.R. Douglas, Gauge fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic QCD, Prog. Theor. Phys. 117 (2007) 1157 [hep-th/0701280] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  38. O. Aharony, A note on the holographic interpretation of string theory backgrounds with varying flux, JHEP 03 (2001) 012 [hep-th/0101013] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. S.S. Gubser, C.P. Herzog and I.R. Klebanov, Symmetry breaking and axionic strings in the warped deformed conifold, JHEP 09 (2004) 036 [hep-th/0405282] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. S.S. Gubser, C.P. Herzog and I.R. Klebanov, Variations on the warped deformed conifold, Comptes Rendus Physique 5 (2004) 1031 [hep-th/0409186] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Hashimoto, T. Sakai and S. Sugimoto, Holographic baryons: static properties and form factors from gauge/string duality, Prog. Theor. Phys. 120 (2008) 1093 [arXiv:0806.3122] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  42. M.K. Banerjee, T.D. Cohen and B.A. Gelman, The nucleon nucleon interaction and large-N c QCD, Phys. Rev. C 65 (2002) 034011 [hep-ph/0109274] [SPIRES].

    ADS  Google Scholar 

  43. A. Cherman, T.D. Cohen and M. Nielsen, Model independent tests of skyrmions and their holographic cousins, Phys. Rev. Lett. 103 (2009) 022001 [arXiv:0903.2662] [SPIRES].

    Article  ADS  Google Scholar 

  44. H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Melnikov.

Additional information

ArXiv ePrint: 1012.1616

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dymarsky, A., Melnikov, D. & Sonnenschein, J. Attractive holographic baryons. J. High Energ. Phys. 2011, 145 (2011). https://doi.org/10.1007/JHEP06(2011)145

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)145

Keywords

Navigation