Skip to main content
Log in

Searching for an attractive force in holographic nuclear physics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We are looking for a holographic explanation of nuclear forces, especially the attractive forces. Recently, the repulsive hard core of a nucleon-nucleon potential was obtained in the Sakai-Sugimoto model, and we show that a generalized version of that model — with an asymmetric configuration of the flavor D8 branes — also has an attractive potential. While the repulsive potential stems from the Chern-Simons interactions of the U(2) flavor gauge fields in 5D, the attractive potential is due to a coupling of the gauge fields to a scalar field describing fluctuations of the flavor branes’ geometry. At intermediate distances r between baryons — smaller than R KK = O(1)/M ω meson but larger than the radius \( \rho \sim {{{{R_{\text{KK}}}}} \left/ {{\sqrt {{{\lambda_{{\text{'t Hooft}}}}}} }} \right.} \) of the instanton at the core of a baryon — both the attractive and the repulsive potentials behave as 1/r 2, but the attractive potential is weaker: Depending on the geometry of the flavor D8 branes, the ratio C a/r = −V attr(r)/V rep(r) ranges from 0 to \( \frac{1}{9} \). The 5D scalar fields also affect the isovector tensor and spin-spin forces, and the overall effect is similar to the isoscalar central forces, V(r) → (1 − C a/r ) × V(r).

At longer ranges r > O(R KK), we find that the attractive potential decays faster than the repulsive potential, so the net potential is always repulsive. This unrealistic behavior may be peculiar to the Sakai-Sugimoto-like models, or it could be a general problem of the N c → ∞ limit inherent in holography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a pedestrian’s guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [SPIRES].

    Article  ADS  Google Scholar 

  2. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  3. D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Dynamics of baryons from string theory and vector dominance, JHEP 09 (2007) 063 [arXiv:0705.2632] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. K.-Y. Kim, S.-J. Sin and I. Zahed, The chiral model of Sakai-Sugimoto at finite baryon density, JHEP 01 (2008) 002 [arXiv:0708.1469] [SPIRES].

    Article  ADS  Google Scholar 

  5. K.-Y. Kim, S.-J. Sin and I. Zahed, Dense holographic QCD in the Wigner-Seitz approximation, JHEP 09 (2008) 001 [arXiv:0712.1582] [SPIRES].

    Article  ADS  Google Scholar 

  6. K.-Y. Kim, S.-J. Sin and I. Zahed, Dense and hot holographic QCD: finite baryonic E field, JHEP 07 (2008) 096 [arXiv:0803.0318] [SPIRES].

    Article  ADS  Google Scholar 

  7. K. Hashimoto, Holographic nuclei, Prog. Theor. Phys. 121 (2009) 241 [arXiv:0809.3141] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  8. O. Bergman, G. Lifschytz and M. Lippert, Holographic nuclear physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [SPIRES].

    Article  ADS  Google Scholar 

  9. M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold nuclear matter in holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [SPIRES].

    Article  ADS  Google Scholar 

  10. J.D. Walecka, A theory of highly condensed matter, Annals Phys. 83 (1974) 491 [SPIRES].

    Article  ADS  Google Scholar 

  11. I.R. Klebanov, Nuclear matter in the Skyrme model, Nucl. Phys. B 262 (1985) 133 [SPIRES].

    Article  ADS  Google Scholar 

  12. M. Rho, S.-J. Sin and I. Zahed, Dense QCD: a holographic dyonic salt, Phys. Lett. B 689 (2010) 23 [arXiv:0910.3774] [SPIRES].

    ADS  Google Scholar 

  13. E. Witten, Baryons and branes in anti de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [SPIRES].

    ADS  Google Scholar 

  14. D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory, Phys. Rev. D 58 (1998) 106002 [hep-th/9805129] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Baryons from supergravity, JHEP 07 (1998) 020 [hep-th/9806158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  17. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  18. S. Seki and J. Sonnenschein, Comments on baryons in holographic QCD, JHEP 01 (2009) 053 [arXiv:0810.1633] [SPIRES].

    Article  ADS  Google Scholar 

  19. H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic QCD, Prog. Theor. Phys. 117 (2007) 1157 [hep-th/0701280] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  20. K. Hashimoto, T. Sakai and S. Sugimoto, Holographic baryons: static properties and form factors from gauge/string duality, Prog. Theor. Phys. 120 (2008) 1093 [arXiv:0806.3122] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  21. K. Hashimoto, T. Sakai and S. Sugimoto, Nuclear force from string theory, Prog. Theor. Phys. 122 (2009) 427 [arXiv:0901.4449] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  22. O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. N. Bernardes, Quantum mechanical law of corresponding states for van der Waals solids at 0 K, Phys. Rev. 120 (1960) 807.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H.R. Glyde, Excitations in liquid and solid helium, Oxford University Press, Oxford U.K. (1994) [ISBN10:0198510098].

    Google Scholar 

  25. D.B. Kaplan and A.V. Manohar, Nucleon nucleon potential in the 1/N c expansion, Phys. Rev. C 56 (1997) 76 [nucl-th/9612021] [SPIRES].

    ADS  Google Scholar 

  26. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  27. Particle Data Group collaboration, C. Amslet et al., Listing for the F 0(600) meson, 2010 partial update to 2009 edition, http://pdg.lbl.gov/2009/listings/rpp2009-list-f0-600.pdf (2009).

  28. R.L. Jaffe, Some spectroscopic problems in the bag theory of quark confinement, in Proceedings of the 11th Rencontre de Moriond conference, Flaine France February 29– March 6 1976, pg. 0187 [SPIRES].

  29. R.L. Jaffe, Exotica, Phys. Rept. 409 (2005) 1.

    Article  ADS  Google Scholar 

  30. R.L. Jaffe, Exotica, Nucl. Phys. Proc. Suppl. 142 (2005) 343 [hep-ph/0409065] [SPIRES].

    Article  ADS  Google Scholar 

  31. N.N. Achasov and G.N. Shestakov, Lightest scalar in the SU(2) L × SU(2) R linear σ-model, Phys. Rev. Lett. 99 (2007) 072001 [arXiv:0704.2368] [SPIRES].

    Article  ADS  Google Scholar 

  32. G. ’t Hooft, G. Isidori, L. Maiani, A.D. Polosa and V. Riquer, A theory of scalar mesons, Phys. Lett. B 662 (2008) 424 [arXiv:0801.2288] [SPIRES].

    ADS  Google Scholar 

  33. S. Ishida et al. eds., Proceedings of YITP Workshop On Possible Existence Of The Sigma Meson and it implications to hadron physics, (Sigma-Meson 2000), Kyoto Japan June 12–14 2000, KEK, Tsukuba Japan (2000) [SPIRES].

  34. M.K. Banerjee, T.D. Cohen and B.A. Gelman, The nucleon nucleon interaction and large-N c QCD, Phys. Rev. C 65 (2002) 034011 [hep-ph/0109274] [SPIRES].

    ADS  Google Scholar 

  35. A. Dymarsky, S. Kuperstein and J. Sonnenschein, Chiral symmetry breaking with non-SUSY D7-branes in ISD backgrounds, JHEP 08 (2009) 005 [arXiv:0904.0988] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Dymarsky, D. Melnikov and J. Sonnenschein, Attractive holographic baryons, arXiv:1012.1616 [SPIRES].

  37. K.-Y. Kim and I. Zahed, Nucleon-nucleon potential from holography, JHEP 03 (2009) 131 [arXiv:0901. 0012] [SPIRES].

    Article  ADS  Google Scholar 

  38. Y. Kinar, E. Schreiber and J. Sonnenschein, Q anti-Q potential from strings in curved spacetime: classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [SPIRES].

    Article  MathSciNet  Google Scholar 

  39. O. Mintakevich and J. Sonnenschein, On the spectra of scalar mesons from HQCD models, JHEP 08 (2008) 082 [arXiv:0806.0152] [SPIRES].

    Article  ADS  Google Scholar 

  40. K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic decays of large-spin mesons, JHEP 02 (2006) 009 [hep-th/0511044] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. A.A. Tseytlin, On non-Abelian generalisation of the Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. D. Brecher and M.J. Perry, Bound states of D-branes and the non-Abelian Born-Infeld action, Nucl. Phys. B 527 (1998) 121 [hep-th/9801127] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [SPIRES].

    Article  ADS  Google Scholar 

  44. O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 [arXiv:0708.2839] [SPIRES].

    Article  ADS  Google Scholar 

  45. A. Dhar and P. Nag, Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking, JHEP 01 (2008) 055 [arXiv:0708.3233] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. O. Aharony and D. Kutasov, Holographic duals of long open strings, Phys. Rev. D 78 (2008) 026005 [arXiv:0803.3547] [SPIRES].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim Kaplunovsky.

Additional information

ArXiv ePrint: 1003.2621

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplunovsky, V., Sonnenschein, J. Searching for an attractive force in holographic nuclear physics. J. High Energ. Phys. 2011, 58 (2011). https://doi.org/10.1007/JHEP05(2011)058

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)058

Keywords

Navigation