Skip to main content
Log in

Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7\;{\text{TeV}} \) and 1 fb−1

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We examine the capability of the CERN Large Hadron Collider to discovery supersymmetry (SUSY) with energy \( \sqrt {s} = 7\;{\text{TeV}} \) and integrated luminosity of about 1 fb−1. Our results are presented within the paradigm minimal supergravity model (mSUGRA or CMSSM). Using a 6-dimensional grid of cuts for optimization of signal to background — including missing E T — we find for \( {m_{\tilde{g}}} \sim {m_{\tilde{q}}} \) an LHC reach of \( {m_{\tilde{g}}} \) ~ 800, 950, 1100 and 1200 GeV for 0.1, 0.3, 1 and 2 fb−1, respectively. For \( {m_{\tilde{g}}} \ll {m_{\tilde{q}}} \), the reach is instead near \( {m_{\tilde{g}}} \) ~ 480, 540, 620 and 700 GeV, for the same integrated luminosities. We also examine the LHC reach in the case of very low integrated luminosity where missing E T may not be viable. We focus on the multi-muon, multi-lepton (including electrons) and dijet signals. Although the LHC reach without E T miss is considerably lower in these cases, it is still substantial: for 0.3 fb−1, the dijet reach in terms of gluino mass is up to 600 GeV for very low m 0, while the dilepton reach is to gluino masses of ∼500 GeV over a range of m 0 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].

    Article  ADS  Google Scholar 

  2. N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [SPIRES].

    ADS  Google Scholar 

  3. H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).

    Book  Google Scholar 

  4. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2004).

    Google Scholar 

  5. P. Binétruy, Supersymmetry, Oxford University Press, Oxford U.K. (2006).

    MATH  Google Scholar 

  6. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  7. H. Baer, X. Tata and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D 45 (1992) 142 [SPIRES].

    ADS  Google Scholar 

  8. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [SPIRES].

    ADS  Google Scholar 

  9. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider II: multilepton chanels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [SPIRES].

    ADS  Google Scholar 

  10. H. Baer, C.-h. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [SPIRES].

    ADS  Google Scholar 

  11. H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, bsγ and a(μ) in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [SPIRES].

    Article  ADS  Google Scholar 

  12. S. Abdullin and F. Charles, Search for SUSY in (leptons +) jets + E T miss final states, Nucl. Phys. B 547 (1999) 60 [hep-ph/9811402] [SPIRES].

    Article  ADS  Google Scholar 

  13. CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [SPIRES].

    ADS  Google Scholar 

  14. B.C. Allanach, J.P.J. Hetherington, M.A. Parker and B.R. Webber, Naturalness reach of the Large Hadron Collider in minimal supergravity, JHEP 08 (2000) 017 [hep-ph/0005186] [SPIRES].

    ADS  Google Scholar 

  15. E. Izaguirre, M. Manhart and J.G. Wacker, Bigger, better, faster, more at the LHC, arXiv:1003.3886 [SPIRES].

  16. A. Chamseddine, R. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [SPIRES].

    Article  ADS  Google Scholar 

  17. R. Barbieri, S. Ferrara and C. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [SPIRES].

    ADS  Google Scholar 

  18. N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [SPIRES].

    Article  ADS  Google Scholar 

  19. L. Hall, J. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [SPIRES].

    ADS  Google Scholar 

  20. D. Volkov and V. Soroka, Higgs effect for Goldstone particles with spin 1/2, JETP Lett. 18 (1973) 312 [Pisma Zh. Eksp. Teor. Fiz. 18 (1973) 529] [SPIRES].

    ADS  Google Scholar 

  21. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: lagrangian, transformation laws and superHiggs effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].

    Article  ADS  Google Scholar 

  22. H. Baer, H. Prosper and H. Summy, Early SUSY discovery at LHC without missing E T : the role of multi-leptons, Phys. Rev. D 77 (2008) 055017 [arXiv:0801.3799] [SPIRES].

    ADS  Google Scholar 

  23. H. Baer, A. Lessa and H. Summy, Early SUSY discovery at LHC via sparticle cascade decays to same-sign and multimuon states, Phys. Lett. B 674 (2009) 49 [arXiv:0809.4719] [SPIRES].

    ADS  Google Scholar 

  24. J. Edsjo, E. Lundstrom, S. Rydbeck and J. Sjolin, Early search for supersymmetric dark matter models at the LHC without missing energy, JHEP 03 (2010) 054 [arXiv:0910.1106] [SPIRES].

    Article  Google Scholar 

  25. L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett. 101 (2008) 221803 [arXiv:0806.1049] [SPIRES].

    Article  ADS  Google Scholar 

  26. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt {s} = 10 \) and 14 TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].

    Article  ADS  Google Scholar 

  27. CMS collaboration, V. Khachatryan et al., Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at \( \sqrt {{(s}} ) = 0.9 \) and 2.36 TeV, JHEP 02 (2010) 041 [arXiv:1002.0621] [SPIRES].

    Article  Google Scholar 

  28. CMS collaboration, A.N. Safonov, CMS experiment at the LHC: commissioning and early physics, arXiv:1003.4038 [SPIRES].

  29. CMS collboration, Missing ET in 0.9 and 2.36 TeV pp collisions, CMS-PAS-JME-10-002.

  30. CMS collboration, Electromagnetic physics objects commissioning with first LHC data, CMS-PAS-EGM-10-001.

  31. CMS collboration, First steps with data: photons. Di-photon resonances, CMS-PAS-PFT-10-001.

  32. ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions at \( \sqrt {s} = 900 \) GeV measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [SPIRES].

    ADS  Google Scholar 

  33. H. Baer, V. Barger and G. Shaughnessy, SUSY backgrounds to standard model calibration processes at the LHC, Phys. Rev. D 78 (2008) 095009 [arXiv:0806.3745] [SPIRES].

    ADS  Google Scholar 

  34. M.L. Mangano, Standard model backgrounds to supersymmetry searches, Eur. Phys. J. C 59 (2009) 373 [arXiv:0809.1567] [SPIRES].

    Article  ADS  Google Scholar 

  35. H. Baer, TASI 2008 lectures on collider Signals II: E T miss signatures and the dark matter connection, arXiv:0901.4732 [SPIRES].

  36. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  37. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES];

    Article  ADS  Google Scholar 

  38. F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: A Monte Carlo event generator for pp, \( \bar{p}p \) and e + e reactions, hep-ph/0312045 [SPIRES].

  39. H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [SPIRES].

    ADS  Google Scholar 

  40. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD, hep-ph/9611232 [SPIRES].

  41. A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM I: dimensionless couplings, Phys. Rev. D 77 (2008) 055007 [arXiv:0712.2858] [SPIRES].

    ADS  Google Scholar 

  42. A.D. Box and X. Tata, Threshold and flavour effects in the renormalization group equations of the MSSM II: dimensionful couplings, Phys. Rev. D 79 (2009) 035004 [arXiv:0810.5765] [SPIRES].

    ADS  Google Scholar 

  43. Isajet 7.79 manual, avaiable at http://www.nhn.ou.edu/˜isajet/.

  44. R.K. Ellis, An update on the next-to-leading order Monte Carlo MCFM, Nucl. Phys. Proc. Suppl. 160 (2006) 170 [SPIRES].

    Article  ADS  Google Scholar 

  45. ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  46. ATLAS collaboration, G. Aad et al., Prospects for supersymmetry and univeral extra dimensions discovery based on inclusive searches at a 10 TeV centre-of-mass energy with the ATLAS detector, ATLAS-PHYS-PUB-2009-084.

  47. H. Baer, K. Hagiwara and X. Tata, Gauginos as a signal for supersymmetry at \( p\bar{p} \) colliders, Phys. Rev. D 35 (1987) 1598 [SPIRES].

    ADS  Google Scholar 

  48. H. Baer, D.D. Karatas and X. Tata, Gluino and squark production in association with gauginos at hadron supercolliders, Phys. Rev. D 42 (1990) 2259 [SPIRES].

    ADS  Google Scholar 

  49. H. Baer, C. Kao and X. Tata, Aspects of chargino-neutralino production at the Tevatron collider, Phys. Rev. D 48 (1993) 5175 [hep-ph/9307347] [SPIRES].

    ADS  Google Scholar 

  50. H. Baer, C.-h. Chen, F. Paige and X. Tata, Trileptons from chargino-neutralino production at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) 4508 [hep-ph/9404212] [SPIRES].

    ADS  Google Scholar 

  51. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [SPIRES].

    ADS  Google Scholar 

  52. H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [SPIRES].

    ADS  Google Scholar 

  53. ATLAS collaboration, ATLAS physics and detector performance technical design report. Volume 1, CERN-LHCC-99-014.

  54. ATLAS collaboration, ATLAS physics and detector performance technical design report. Volume 2, CERN-LHCC-99-015.

  55. ATLAS collaboration, Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020.

  56. CMS collaboration, Physics technical design report. Volume 2, CERN-LHCC-2006-021.

  57. H. Baer, M. Bisset, X. Tata and J. Woodside, Supercollider signals from gluino and squark decays to Higgs bosons, Phys. Rev. D 46 (1992) 303 [SPIRES].

    ADS  Google Scholar 

  58. H. Baer, J.R. Ellis, G.B. Gelmini, D.V. Nanopoulos and X. Tata, Squark decays into gauginos at the \( p\bar{p} \) collider, Phys. Lett. B 161 (1985) 175 [SPIRES].

    ADS  Google Scholar 

  59. G. Gamberini, Heavy gluino and squark decays at p anti-p collider, Z. Phys. C 30 (1986) 605 [SPIRES].

    ADS  Google Scholar 

  60. H. Baer, V.D. Barger, D. Karatas and X. Tata, Detecting gluinos at hadron supercolliders, Phys. Rev. D 36 (1987) 96 [SPIRES].

    ADS  Google Scholar 

  61. U. Chattopadhyay, A. Datta, A. Datta, A. Datta and D.P. Roy, LHC signature of the minimal SUGRA model with a large soft scalar mass, Phys. Lett. B 493 (2000) 127 [hep-ph/0008228] [SPIRES].

    ADS  Google Scholar 

  62. P.G. Mercadante, J.K. Mizukoshi and X. Tata, Using b-tagging to enhance the SUSY reach of the CERN Large Hadron Collider, Phys. Rev. D 72 (2005) 035009 [hep-ph/0506142] [SPIRES].

    ADS  Google Scholar 

  63. S.P. Das, A. Datta, M. Guchait, M. Maity and S. Mukherjee, Focus point SUSY at the LHC revisited, Eur. Phys. J. C 54 (2008) 645 [arXiv:0708.2048] [SPIRES].

    Article  ADS  Google Scholar 

  64. R.H.K. Kadala, P.G. Mercadante, J.K. Mizukoshi and X. Tata, Heavy-flavour tagging and the supersymmetry reach of the CERN Large Hadron Collider, Eur. Phys. J. C 56 (2008) 511 [arXiv:0803.0001] [SPIRES].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Baer.

Additional information

ArXiv ePrint: 1004.3594

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baer, H., Barger, V., Lessa, A. et al. Capability of LHC to discover supersymmetry with \( \sqrt {s} = 7\;{\text{TeV}} \) and 1 fb−1 . J. High Energ. Phys. 2010, 102 (2010). https://doi.org/10.1007/JHEP06(2010)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)102

Keywords

Navigation