Skip to main content
Log in

Early search for supersymmetric dark matter models at the LHC without missing energy

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate early discovery signals for supersymmetry at the Large Hadron Collider without using information about missing transverse energy. Instead we use cuts on the number of jets and isolated leptons (electrons and/or muons). We work with minimal supersymmetric extensions of the standard model, and focus on phenomenological models that give a relic density of dark matter compatible with the WMAP measurements. An important model property for early discovery is the presence of light sleptons, and we find that for an integrated luminosity of only 200–300 pb−1 at a center-of-mass energy of 10TeV models with gluino masses up to ∼700GeV can be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [SPIRES].

    ADS  Google Scholar 

  2. H. Baer, C.-H. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider II: multilepton channels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [SPIRES].

    ADS  Google Scholar 

  3. ATLAS collaboration, S. Yamamoto, Strategy for early SUSY searches at ATLAS, arXiv:0710.3953 [SPIRES].

  4. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  5. H. Baer, H. Prosper and H. Summy, Early SUSY discovery at LHC without missing E T : the role of multi-leptons, Phys. Rev. D 77 (2008) 055017 [arXiv:0801.3799] [SPIRES].

    ADS  Google Scholar 

  6. H. Baer, A. Lessa and H. Summy, Early SUSY discovery at LHC via sparticle cascade decays to same-sign and multimuon states, Phys. Lett. B 674 (2009) 49 [arXiv:0809.4719] [SPIRES].

    ADS  Google Scholar 

  7. H. Baer, V. Barger, A. Lessa and X. Tata, Supersymmetry discovery potential of the LHC at \( \sqrt s = 10 \) and 14TeV without and with missing E T , JHEP 09 (2009) 063 [arXiv:0907.1922] [SPIRES].

    Article  ADS  Google Scholar 

  8. L. Bergstrom, Non-baryonic dark matter: observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [SPIRES].

    Article  ADS  Google Scholar 

  9. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

    Article  ADS  Google Scholar 

  10. L. Bergstrom, Dark matter candidates, New J. Phys. 11 (2009) 105006 [arXiv:0903.4849] [SPIRES].

    Article  ADS  Google Scholar 

  11. L. Bergstrom and P. Gondolo, Limits on direct detection of neutralino dark matter from bsγ decays, Astropart. Phys. 5 (1996) 263 [hep-ph/9510252] [SPIRES].

    Article  ADS  Google Scholar 

  12. ATLAS collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003.

    Google Scholar 

  13. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  14. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  15. J. Conway et al., http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs4-general.htm.

  16. The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  17. P. Gondolo et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [SPIRES].

    ADS  Google Scholar 

  18. J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-Leading Order QCD predictions for W + 2jet and Z + 2jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [SPIRES].

    ADS  Google Scholar 

  19. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [SPIRES].

    Article  ADS  Google Scholar 

  20. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].

    Article  ADS  Google Scholar 

  21. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Edsjö.

Additional information

ArXiv ePrint: 0910.1106

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edsjö, J., Lundström, E., Rydbeck, S. et al. Early search for supersymmetric dark matter models at the LHC without missing energy. J. High Energ. Phys. 2010, 54 (2010). https://doi.org/10.1007/JHEP03(2010)054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2010)054

Keywords

Navigation