Skip to main content
Log in

Holography of charged dilaton black holes in general dimensions

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study several aspects of charged dilaton black holes with planar symmetry in (d + 2)-dimensional spacetime, generalizing the four-dimensional results investigated in arXiv:0911.3586 [hep-th]. We revisit the exact solutions with both zero and finite temperature and discuss the thermodynamics of the near-extremal black holes. We calculate the AC conductivity in the zero-temperature background by solving the corresponding Schrödinger equation and find that the AC conductivity behaves like ω δ, where the exponent δ is determined by the dilaton coupling α and the spacetime dimension parameter d. Moreover, we also study the Gauss-Bonnet corrections to η/s in a five-dimensional finite-temperature background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  7. J. McGreevy, Holographic duality with a view toward many-body physics, arXiv:0909.0518 [SPIRES].

  8. G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES].

  9. S. Sachdev, Condensed matter and AdS/CFT, arXiv:1002.2947 [SPIRES].

  10. G.W. Gibbons and K.-i. Maeda, Black holes and membranes in higher dimensional theories with dilaton fields, Nucl. Phys. B 298 (1988) 741 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A 6 (1991) 2353 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. D. Garfinkle, G.T. Horowitz and A. Strominger, Charged black holes in string theory, Phys. Rev. D 43 (1991) 3140 [Erratum ibid. D 45 (1992) 3888] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. C.F.E. Holzhey and F. Wilczek, Black holes as elementary particles, Nucl. Phys. B 380 (1992) 447 [hep-th/9202014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional spacetimes, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  16. C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  17. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, arXiv:0911.3586 [SPIRES].

  18. S.S. Gubser and F.D. Rocha, Peculiar properties of a charged dilatonic black hole in AdS 5, Phys. Rev. D 81 (2010) 046001 [arXiv:0911.2898] [SPIRES].

    ADS  Google Scholar 

  19. J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].

    Article  Google Scholar 

  20. M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [SPIRES].

    Article  Google Scholar 

  21. C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, arXiv:1005.4690 [SPIRES].

  22. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].

  23. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. R.B. Mann, Lifshitz topological black holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [SPIRES].

    Article  ADS  Google Scholar 

  27. D.-W. Pang, A note on black holes in asymptotically Lifshitz spacetime, arXiv:0905.2678 [SPIRES].

  28. G. Bertoldi, B.A. Burrington and A. Peet, Black holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [SPIRES].

    ADS  Google Scholar 

  29. G. Bertoldi, B.A. Burrington and A.W. Peet, Thermodynamics of black branes in asymptotically Lifshitz spacetimes, Phys. Rev. D 80 (2009) 126004 [arXiv:0907.4755] [SPIRES].

    ADS  Google Scholar 

  30. W. Li, T. Nishioka and T. Takayanagi, Some no-go theorems for string duals of non-relativistic Lifshitz-like theories, JHEP 10 (2009) 015 [arXiv:0908.0363] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. D.-W. Pang, R 2 corrections to asymptotically Lifshitz spacetimes, JHEP 10 (2009) 031 [arXiv:0908.1272] [SPIRES].

    Article  ADS  Google Scholar 

  32. E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic superconductors with Lifshitz Scaling, J. Phys. A 43 (2010) 065401 [arXiv:0908.2611] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. K. Balasubramanian and J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 80 (2009) 104039 [arXiv:0909.0263] [SPIRES].

    ADS  Google Scholar 

  34. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [SPIRES].

    ADS  Google Scholar 

  35. R.-G. Cai, Y. Liu and Y.-W. Sun, A Lifshitz black hole in four dimensional R 2 gravity, JHEP 10 (2009) 080 [arXiv:0909.2807] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. S.-J. Sin, S.-S. Xu and Y. Zhou, Holographic superconductor for a Lifshitz fixed point, arXiv:0909.4857 [SPIRES].

  37. Y.S. Myung, Y.-W. Kim and Y.-J. Park, Dilaton gravity approach to three dimensional Lifshitz black hole, arXiv:0910.4428 [SPIRES].

  38. D.-W. Pang, On charged Lifshitz black holes, JHEP 01 (2010) 116 [arXiv:0911.2777] [SPIRES].

    Article  Google Scholar 

  39. B.R. Majhi, Hawking radiation and black hole spectroscopy in Hořava-Lifshitz gravity, Phys. Lett. B 686 (2010) 49 [arXiv:0911.3239] [SPIRES].

    ADS  Google Scholar 

  40. D.-W. Pang, Conductivity and diffusion constant in Lifshitz backgrounds, JHEP 01 (2010) 120 [arXiv:0912.2403] [SPIRES].

    Article  Google Scholar 

  41. M.C.N. Cheng, S.A. Hartnoll and C.A. Keeler, Deformations of Lifshitz holography, JHEP 03 (2010) 062 [arXiv:0912.2784] [SPIRES].

    Article  Google Scholar 

  42. K.B. Fadafan, Drag force in asymptotically Lifshitz spacetimes, arXiv:0912.4873 [SPIRES].

  43. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Analytic Lifshitz black holes in higher dimensions, JHEP 04 (2010) 030 [arXiv:1001.2361] [SPIRES].

    Article  Google Scholar 

  44. J. Blaback, U.H. Danielsson and T. Van Riet, Lifshitz backgrounds from 10D supergravity, JHEP 02 (2010) 095 [arXiv:1001.4945] [SPIRES].

    Article  Google Scholar 

  45. G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [SPIRES].

    Article  ADS  Google Scholar 

  46. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  49. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  51. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  52. R. Brustein, D. Gorbonos and M. Hadad, Wald’s entropy is equal to a quarter of the horizon area in units of the effective gravitational coupling, Phys. Rev. D 79 (2009) 044025 [arXiv:0712.3206] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  53. R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].

    ADS  Google Scholar 

  54. R. Brustein and A.J.M. Medved, The shear diffusion coefficient for generalized theories of gravity, Phys. Lett. B 671 (2009) 119 [arXiv:0810.2193] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  55. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  56. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].

    ADS  Google Scholar 

  57. N. Banerjee and S. Dutta, Near-horizon analysis of η/s, arXiv:0911.0557 [SPIRES].

  58. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].

    ADS  Google Scholar 

  59. M.F. Paulos, Transport coefficients, membrane couplings and universality at extremality, JHEP 02 (2010) 067 [arXiv:0910.4602] [SPIRES].

    Article  Google Scholar 

  60. N. Banerjee and S. Dutta, Higher derivative corrections to shear viscosity from graviton’s effective coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].

    Article  ADS  Google Scholar 

  61. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  62. X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  63. A. Buchel, R.C. Myers and A. Sinha, Beyond η/s = 1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  64. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Black holes in five-dimensional gauged supergravity with higher derivatives, JHEP 12 (2009) 045 [arXiv:0812.3572] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. R.C. Myers, M.F. Paulos and A. Sinha, Holographic hydrodynamics with a chemical potential, JHEP 06 (2009) 006 [arXiv:0903.2834] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  66. S. Cremonini, K. Hanaki, J.T. Liu and P. Szepietowski, Higher derivative effects on η/s at finite chemical potential, Phys. Rev. D 80 (2009) 025002 [arXiv:0903.3244] [SPIRES].

    ADS  Google Scholar 

  67. S.A. Hartnoll and P. Kovtun, Hall conductivity from dyonic black holes, Phys. Rev. D 76 (2007) 066001 [arXiv:0704.1160] [SPIRES].

    ADS  Google Scholar 

  68. S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [SPIRES].

    ADS  Google Scholar 

  69. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, arXiv:0903.2477 [SPIRES].

  70. M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science 325 (2009) 439 [arXiv:0904.1993] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, arXiv:0907.2694 [SPIRES].

  72. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York U.S.A. (1964).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wei Pang.

Additional information

ArXiv ePrint: 1003.5064

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CM., Pang, DW. Holography of charged dilaton black holes in general dimensions. J. High Energ. Phys. 2010, 93 (2010). https://doi.org/10.1007/JHEP06(2010)093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2010)093

Keywords

Navigation