Skip to main content
Log in

On three dimensional quiver gauge theories and integrability

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work we compare different descriptions of the space of vacua of certain three dimensional \( \mathcal{N}=4 \) superconformal field theories, compactified on a circle and mass-deformed to \( \mathcal{N}=2 \) in a canonical way. The original \( \mathcal{N}=4 \) theories are known to admit two distinct mirror descriptions as linear quiver gauge theories, and many more descriptions which involve the compactification on a segment of four-dimensional \( \mathcal{N}=4 \) super Yang-Mills theory. Each description gives a distinct presentation of the moduli space of vacua. Our main result is to establish the precise dictionary between these presentations. We also study the relationship between this gauge theory problem and integrable systems. The space of vacua in the linear quiver gauge theory description is related by Nekrasov-Shatashvili duality to the eigenvalues of quantum integrable spin chain Hamiltonians. The space of vacua in the four-dimensional gauge theory description is related to the solution of certain integrable classical many-body problems. Thus we obtain numerous dualities between these integrable models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, SL(2, \( \mathbb{Z} \)) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].

    Article  ADS  Google Scholar 

  4. J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].

    Article  ADS  Google Scholar 

  5. V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative tests of three-dimensional dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Bhattacharya, S. Bhattacharyya, S. Minwalla and S. Raju, Indices for superconformal field theories in 3,5 and 6 dimensions, JHEP 02 (2008) 064 [arXiv:0801.1435] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Kim, The complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].

  11. Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. C. Krattenthaler, V. Spiridonov and G. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP 06 (2011) 008 [arXiv:1103.4075] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Kapustin and B. Willett, Generalized superconformal index for three dimensional field theories, arXiv:1106.2484 [INSPIRE].

  14. F. Benini, T. Nishioka and M. Yamazaki, 4D index to 3D index and 2d TQFT, Phys. Rev. D 86 (2012) 065015 [arXiv:1109.0283] [INSPIRE].

    ADS  Google Scholar 

  15. S. Cecotti and C. Vafa, On classification of N = 2 supersymmetric theories, Commun. Math. Phys. 158 (1993) 569 [hep-th/9211097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. N.A. Nekrasov and S.L. Shatashvili, Supersymmetric vacua and Bethe ansatz, Nucl. Phys. Proc. Suppl. 192-193 (2009) 91 [arXiv:0901.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N.A. Nekrasov and S.L. Shatashvili, Quantum integrability and supersymmetric vacua, Prog. Theor. Phys. Suppl. 177 (2009) 105 [arXiv:0901.4748] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. D. Gaiotto and E. Witten, Supersymmetric boundary conditions in N = 4 super Yang-Mills theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) [arXiv:0807.3720] [INSPIRE].

  22. R. Donagi and E. Witten, Supersymmetric Yang-Mills theory and integrable systems, Nucl. Phys. B 460 (1996) 299 [hep-th/9510101] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Nekrasov, A. Rosly and S. Shatashvili, Darboux coordinates, Yang-Yang functional and gauge theory, Nucl. Phys. Proc. Suppl. 216 (2011) 69 [arXiv:1103.3919] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. S.N.M. Ruijsenaars, Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case, Comm. Math. Phys. 115 (1988) 127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S.N.M. Ruijsenaars, Action-angle maps and scattering theory for some finite-dimensional integrable systems. II. Solitons, antisolitons, and their bound states, Publ. Res. Inst. Math. Sci. 30 (1994) 865.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, arXiv:1211.1287 [INSPIRE].

  27. A. Braverman, D. Maulik and A. Okounkov, Quantum cohomology of the Springer resolution, arXiv:1001.0056 [INSPIRE].

  28. I. Yaakov, Redeeming bad theories, arXiv:1303.2769 [INSPIRE].

  29. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2n c ) and U(N c ) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like duality in three dimensions, arXiv:1012.4021 [INSPIRE].

  33. D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Mukhin, V. Tarasov and A. Varchenko, Bispectral and (gl(N),gl(M)) dualities, discrete versus differential, Adv. Math. 218 (2008) 216.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Gorsky, S. Gukov and A. Mironov, Multiscale N = 2 SUSY field theories, integrable systems and their stringy/brane origin. 1., Nucl. Phys. B 517 (1998) 409 [hep-th/9707120] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Gorsky, S. Gukov and A. Mironov, SUSY field theories, integrable systems and their stringy/brane origin. 2., Nucl. Phys. B 518 (1998) 689 [hep-th/9710239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Ruijsenaars, Action-angle maps and scattering theory for some finite-dimensional integrable systems. III. Sutherland type systems and their duals, Publ. Res. Inst. Math. Sci. 31 (1995) 247.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Ito, T. Okuda and M. Taki, Line operators on S1 × R3 and quantization of the Hitchin moduli space, JHEP 04 (2012) 010 [arXiv:1111.4221] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. J. Gomis, T. Okuda and V. Pestun, Exact results fort Hooft loops in gauge theories on S 4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].

    Article  ADS  Google Scholar 

  41. N. Hama and K. Hosomichi, Seiberg-Witten theories on ellipsoids, JHEP 09 (2012) 033 [Addendum ibid. 1210 (2012) 051] [arXiv:1206.6359] [INSPIRE].

  42. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  43. N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4d gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].

    ADS  Google Scholar 

  46. T. Dimofte and D. Gaiotto, An E 7 surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Kharchev, D. Lebedev and M. Semenov-Tian-Shansky, Unitary representations of U(q) sl(2, \( \mathbb{R} \)), the modular double and the multiparticle q deformed Toda chains, Commun. Math. Phys. 225 (2002) 573 [hep-th/0102180] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. A. Gorsky and N. Nekrasov, Relativistic Calogero-Moser model as gauged WZW theory, Nucl. Phys. B 436 (1995) 582 [hep-th/9401017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. V. Fock, A. Gorsky, N. Nekrasov and V. Rubtsov, Duality in integrable systems and gauge theories, JHEP 07 (2000) 028 [hep-th/9906235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. T. Dimofte and S. Gukov, Chern-Simons theory and S-duality, arXiv:1106.4550 [INSPIRE].

  51. E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].

  52. A. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror conjecture, math/9612001.

  53. E. Mukhin, V. Tarasov and A. Varchenko, Bethe algebra of Gaudin model, Calogero-Moser space and Cherednik algebra, arXiv:0906.5185.

  54. E. Mukhin, V. Tarasov and A. Varchenko, KZ characteristic variety as the zero set of classical Calogero-Moser Hamiltonians, SIGMA 8 (2012) 72 [arXiv:1201.3990].

    MathSciNet  Google Scholar 

  55. E. Mukhin, V. Tarasov and A. Varchenko, Gaudin Hamiltonians generate the Bethe algebra of a tensor power of the vector representation of (gl(N)), Algebra i Analiz 22 (2010) 177.

    MathSciNet  Google Scholar 

  56. S.N.M. Ruijsenaars and H. Schneider, A new class of integrable systems and its relation to solitons, Ann. Physics 170 (1986) 370.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. S.N.M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Comm. Math. Phys. 110 (1987) 191.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. L. Fehér and C. Klimčík, On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models, Journal of Physics A Mathematical General 42 (2009), no. 18 185202 [arXiv:0901.1983].

  59. L. Feher and V. Ayadi, Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction, J. Math. Phys. 51 (2010) 103511 [arXiv:1005.4531] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. L. Feher and C. Klimčík, Poisson-Lie interpretation of trigonometric Ruijsenaars duality, Commun. Math. Phys. 301 (2011) 55 [arXiv:0906.4198] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. L. Feher and C. Klimčík, Self-duality of the compactified Ruijsenaars-Schneider system from quasi-hamiltonian reduction, Nucl. Phys. B 860 (2012) 464 [arXiv:1101.1759] [INSPIRE].

    Article  ADS  Google Scholar 

  62. V.G. Drinfeld, Quantum groups, J. Math. Sci. 41 (1988) 898.

    Article  MathSciNet  Google Scholar 

  63. J.M., Quantum R matrix related to the generalized Toda system: an algebraic approach, in Field theory, quantum gravity and strings, H.J. de Vega and N. Sanchez eds., Springer, Berlin Germany (1986) 335.

  64. W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys. 49 (1928) 619.

    Article  ADS  MATH  Google Scholar 

  65. H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain, Z. Phys. 71 (1931) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Gaudin, Diagonalisation dune classe dhamiltoniens de spin, J. Phys. France 37 (1976) 1087.

    Article  MathSciNet  Google Scholar 

  67. B. Feigin, E. Frenkel and N. Reshetikhin, Gaudin model, Bethe ansatz and correlation functions at the critical level, Commun. Math. Phys. 166 (1994) 27 [hep-th/9402022] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. N. Nekrasov, Holomorphic bundles and many body systems, Commun. Math. Phys. 180 (1996) 587 [hep-th/9503157] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. E. Mukhin, V. Tarasov and A. Varchenko, Bethe eigenvectors of higher transfer matrices, Journal of Statistical Mechanics: Theory and Experiment 8 (2006) 2 [arXiv:math/0605015].

    MathSciNet  Google Scholar 

  70. D. Gaiotto and E. Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor. Math. Phys. 16 (2012), no. 3 935–1086 [arXiv:1106.4789] [INSPIRE].

    MathSciNet  Google Scholar 

  71. B. Feigin, E. Frenkel and V. Toledano Laredo, Gaudin models with irregular singularities, Adv. Math. 223 (2010) 873 [math/0612798] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  72. F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419.

    Article  MathSciNet  ADS  Google Scholar 

  73. J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975) 197.

    Article  ADS  MATH  Google Scholar 

  74. B. Sutherland, Exact results for a quantum many body problem in one-dimension. 2., Phys. Rev. A 5 (1972) 1372 [INSPIRE].

    ADS  Google Scholar 

  75. K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in Omega background and integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].

    Article  ADS  Google Scholar 

  76. E. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl. 16 (1982) 263 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  77. H. Braden, A. Marshakov, A. Mironov and A. Morozov, On double elliptic integrable systems. 1. A duality argument for the case of SU(2), Nucl. Phys. B 573 (2000) 553 [hep-th/9906240] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. A. Mironov and A. Morozov, Double elliptic systems: problems and perspectives, hep-th/0001168 [INSPIRE].

  79. A. Mironov and A. Morozov, p,q duality and hamiltonian flows in the space of integrable systems or integrable systems as canonical transforms of the free ones, Phys. Lett. B 524 (2002) 217 [hep-th/0107114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  80. D. Gaiotto, L. Rastelli and S.S. Razamat, Bootstrapping the superconformal index with surface defects, arXiv:1207.3577 [INSPIRE].

  81. R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Japan 50 (1981) 3785.

    Article  MathSciNet  ADS  Google Scholar 

  82. A. Gorsky, SQCD, superconducting gaps and cyclic RG flows, arXiv:1202.4306 [INSPIRE].

  83. A. Zabrodin, Bethe ansatz and Hirota equation in integrable models, arXiv:1211.4428 [INSPIRE].

  84. A. Gadde, S. Gukov and P. Putrov, Walls, lines and spectral dualities in 3D gauge theories, arXiv:1302.0015 [INSPIRE].

  85. A. Mironov, A. Morozov, B. Runov, Y. Zenkevich and A. Zotov, Spectral duality between Heisenberg chain and Gaudin model, Letters in Mathematical Physics: Volume 10 3 (2013), Page 299–329 [arXiv:1206.6349] [INSPIRE].

  86. A. Mironov, A. Morozov, Y. Zenkevich and A. Zotov, Spectral duality in integrable systems from AGT conjecture, JETP Lett. 97 (2013) 45 [arXiv:1204.0913] [INSPIRE].

    Article  ADS  Google Scholar 

  87. H.-Y. Chen, P.-S. Hsin and P. Koroteev, On the integrability of four dimensional \( \mathcal{N}=2 \) gauge theories in the Omega background, in progress.

  88. N. Nekrasov and V. Pestun, Seiberg-Witten geometry of four dimensional N = 2 quiver gauge theories, arXiv:1211.2240 [INSPIRE].

  89. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koroteev.

Additional information

ArXiv ePrint: 1304.0779

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaiotto, D., Koroteev, P. On three dimensional quiver gauge theories and integrability. J. High Energ. Phys. 2013, 126 (2013). https://doi.org/10.1007/JHEP05(2013)126

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2013)126

Keywords

Navigation