Skip to main content
Log in

Radion dynamics and phenomenology in the linear dilaton model

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the properties of the radion in the 5D linear dilaton model arising from Little String Theory. A Goldberger-Wise type mechanism is used to stabilise a large interbrane distance, with the dilaton now playing the role of the stabilising field. We consider the coupled fluctuations of the metric and dilaton fields and identify the physical scalar modes of the system. The wavefunctions and masses of the radion and Kaluza-Klein modes are calculated, giving a radion mass of order the curvature scale. As a result of the direct coupling between the dilaton and Standard Model fields, the radion couples to the SM Lagrangian, in addition to the trace of the energy-momentum tensor. The effect of these additional interaction terms on the radion decay modes is investigated, with a notable increase in the branching fraction to γγ. We also consider the effects of a non-minimal Higgs coupling to gravity, which introduces a mixing between the Higgs and radion modes. Finally, we calculate the production cross section of the radion at the LHC and use the current Higgs searches to place constraints on the parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  2. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Berkooz, M. Rozali and N. Seiberg, Matrix description of M-theory on T 4 and T 5 , Phys. Lett. B 408 (1997) 105 [hep-th/9704089] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. N. Seiberg, New theories in six-dimensions and matrix description of M-theory on T 5 and \( {{{{{T}^{{5}}}}} \left/ {{{{\mathbb{Z}}_2}}} \right.} \), Phys. Lett. B 408 (1997) 98 [hep-th/9705221] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1133 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  7. I. Antoniadis, S. Dimopoulos and A. Giveon, Little string theory at a TeV, JHEP 05 (2001) 055 [hep-th/0103033] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of TeV little string theory from holography, Phys. Rev. Lett. 108 (2012) 081602 [arXiv:1102.4043] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Baryakhtar, Graviton phenomenology of linear dilaton geometries, arXiv:1202.6674 [INSPIRE].

  10. L. Kofman, J. Martin and M. Peloso, Exact identification of the radion and its coupling to the observable sector, Phys. Rev. D 70 (2004) 085015 [hep-ph/0401189] [INSPIRE].

    ADS  Google Scholar 

  11. T. Gherghetta and M. Peloso, Stability analysis of 5D gravitational solutions with N bulk scalar fields, Phys. Rev. D 84 (2011) 104004 [arXiv:1109.5776] [INSPIRE].

    ADS  Google Scholar 

  12. O. DeWolfe, D. Freedman, S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. G.F. Giudice, R. Rattazzi and J.D. Wells, Graviscalars from higher dimensional metrics and curvature Higgs mixing, Nucl. Phys. B 595 (2001) 250 [hep-ph/0002178] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].

    ADS  Google Scholar 

  15. S. Bae, P. Ko, H. Lee and J. Lee, Higher-derivative gravity and the AdS/CFT correspondence, Prog. Theor. Phys. 105 (2001) 1017 [hep-ph/0103187] [INSPIRE].

    Article  Google Scholar 

  16. S. Bae, P. Ko, H.S. Lee and J. Lee, Phenomenology of the radion in Randall-Sundrum scenario at colliders, Phys. Lett. B 487 (2000) 299 [hep-ph/0002224] [INSPIRE].

    ADS  Google Scholar 

  17. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

    Article  ADS  Google Scholar 

  18. V. Barger and M. Ishida, Randall-Sundrum reality at the LHC, Phys. Lett. B 709 (2012) 185 [arXiv:1110.6452] [INSPIRE].

    ADS  Google Scholar 

  19. V. Barger, M. Ishida and W.-Y. Keung, Dilaton at the LHC, Phys. Rev. D 85 (2012) 015024 [arXiv:1111.2580] [INSPIRE].

    ADS  Google Scholar 

  20. B. Coleppa, T. Grégoire and H.E. Logan, Dilaton constraints and LHC prospects, Phys. Rev. D 85 (2012) 055001 [arXiv:1111.3276] [INSPIRE].

    ADS  Google Scholar 

  21. H. de Sandes and R. Rosenfeld, Radion-Higgs mixing effects on bounds from LHC Higgs boson searches, Phys. Rev. D 85 (2012) 053003 [arXiv:1111.2006] [INSPIRE].

    ADS  Google Scholar 

  22. K. Cheung and T.-C. Yuan, Could the excess seen at 124–126 GeV Be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  23. H. Davoudiasl, T. McElmurry and A. Soni, Precocious diphoton signals of the little radion at hadron colliders, Phys. Rev. D 82 (2010) 115028 [arXiv:1009.0764] [INSPIRE].

    ADS  Google Scholar 

  24. ATLAS Collaboration, Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb 1 of pp collisions at \( \sqrt {s} = 7TeV \) with ATLAS, arXiv:1202.1414 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cox.

Additional information

ArXiv ePrint: 1203.5870

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, P., Gherghetta, T. Radion dynamics and phenomenology in the linear dilaton model. J. High Energ. Phys. 2012, 149 (2012). https://doi.org/10.1007/JHEP05(2012)149

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2012)149

Keywords

Navigation