Skip to main content
Log in

Five-brane superpotentials, blow-up geometries and SU(3) structure manifolds

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of space-time filling five-branes wrapped on curves in heterotic and orientifold Calabi-Yau compactifications. We first study the leading \( \mathcal{N} = 1 \) scalar potential on the infinite deformation space of the brane-curve around a supersymmetric configuration. The higher order potential is also determined by a brane superpotential which we compute for a subset of light deformations. We argue that these deformations map to new complex structure deformations of a non-Calabi-Yau manifold which is obtained by blowing up the brane-curve into a four-cycle and by replacing the brane by background fluxes. This translates the original brane-bulk system into a unifying geometrical formulation. Using this blow-up geometry we compute the complete set of open-closed Picard-Fuchs differential equations and identify the brane superpotential at special points in the field space for five-branes in toric Calabi-Yau hypersurfaces. This has an interpretation in open mirror symmetry and enables us to list compact disk instanton invariants. As a first step towards promoting the blow-up geometry to a supersymmetric heterotic background we propose a non-Kähler SU(3) structure and an identification of the three-form flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].

    Article  ADS  Google Scholar 

  2. D. Lüst, Intersecting brane worlds: A path to the standard model?, Class. Quant. Grav. 21 (2004) S1399 [hep-th/0401156] [SPIRES].

    Article  MATH  Google Scholar 

  3. R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [SPIRES].

    Article  ADS  Google Scholar 

  4. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [SPIRES].

  6. J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968) 62.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. McLean, Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998) 705.

    MathSciNet  MATH  Google Scholar 

  8. E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B 507 (1997) 658 [hep-th/9706109] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [SPIRES].

  10. M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002) 1 [hep-th/0105045] [SPIRES].

    MathSciNet  Google Scholar 

  11. P. Mayr, N = 1 mirror symmetry and open/closed string duality, Adv. Theor. Math. Phys. 5 (2002) 213 [hep-th/0108229] [SPIRES].

    MathSciNet  Google Scholar 

  12. W. Lerche and P. Mayr, On N = 1 mirror symmetry for open type-II strings, hep-th/0111113 [SPIRES].

  13. W. Lerche, P. Mayr and N. Warner, Holomorphic N = 1 special geometry of open-closed type-II strings, hep-th/0207259 [SPIRES].

  14. W. Lerche, P. Mayr and N. Warner, N = 1 special geometry, mixed Hodge variations and toric geometry, hep-th/0208039 [SPIRES].

  15. J. Walcher, Calculations for Mirror Symmetry with D-branes, JHEP 09 (2009) 129 [arXiv:0904.4905] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Krefl and J. Walcher, Real Mirror Symmetry for One-parameter Hypersurfaces, JHEP 09 (2008) 031 [arXiv:0805.0792] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. D.R. Morrison and J. Walcher, D-branes and Normal Functions, arXiv:0709.4028 [SPIRES].

  18. J. Walcher, Opening mirror symmetry on the quintic, Commun. Math. Phys. 276 (2007) 671 [hep-th/0605162] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J. Knapp and E. Scheidegger, Towards Open String Mirror Symmetry for One-Parameter Calabi-Yau Hypersurfaces, arXiv:0805.1013 [SPIRES].

  20. J. Knapp and E. Scheidegger, Matrix Factorizations, Massey Products and F-terms for Two-Parameter Calabi-Yau Hypersurfaces, arXiv:0812.2429 [SPIRES].

  21. M. Baumgartl, I. Brunner and M.R. Gaberdiel, D-brane superpotentials and RG flows on the quintic, JHEP 07 (2007) 061 [arXiv:0704.2666] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Baumgartl and S. Wood, Moduli Webs and Superpotentials for Five-Branes, JHEP 06 (2009) 052 [arXiv:0812.3397] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Baumgartl, I. Brunner and M. Soroush, D-brane Superpotentials: Geometric and Worldsheet Approaches, Nucl. Phys. B 843 (2011) 602 [arXiv:1007.2447] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. H. Jockers and M. Soroush, Effective superpotentials for compact D5-brane Calabi-Yau geometries, Commun. Math. Phys. 290 (2009) 249 [arXiv:0808.0761] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. H. Jockers and M. Soroush, Relative periods and open-string integer invariants for a compact Calabi-Yau hypersurface, Nucl. Phys. B 821 (2009) 535 [arXiv:0904.4674] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, The D5-brane effective action and superpotential in N = 1 compactifications, Nucl. Phys. B 816 (2009) 139 [arXiv:0811.2996] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Alim, M. Hecht, P. Mayr and A. Mertens, Mirror Symmetry for Toric Branes on Compact Hypersurfaces, JHEP 09 (2009) 126 [arXiv:0901.2937] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Alim et al., Hints for Off-Shell Mirror Symmetry in type-II/F-theory Compactifications, Nucl. Phys. B 841 (2010) 303 [arXiv:0909.1842] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Alim et al., Type II/F-theory Superpotentials with Several Deformations and N = 1 Mirror Symmetry, arXiv:1010.0977 [SPIRES].

  30. T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing Brane and Flux Superpotentials in F-theory Compactifications, JHEP 04 (2010) 015 [arXiv:0909.2025] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Aganagic and C. Beem, The Geometry of D-brane Superpotentials, arXiv:0909.2245 [SPIRES].

  32. S. Li, B.H. Lian and S.-T. Yau, Picard-Fuchs Equations for Relative Periods and Abel-Jacobi Map for Calabi-Yau Hypersurfaces, arXiv:0910.4215 [SPIRES].

  33. T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Five-Brane Superpotentials and Heterotic/F-theory Duality, Nucl. Phys. B 838 (2010) 458 [arXiv:0912.3250] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. H. Fuji, S. Nakayama, M. Shimizu and H. Suzuki, A Note on Computations of D-brane Superpotential, arXiv:1011.2347 [SPIRES].

  35. M. Shimizu and H. Suzuki, Open mirror symmetry for Pfaffian Calabi-Yau 3-folds, JHEP 03 (2011) 083 [arXiv:1011.2350] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Larfors, D. Lüst and D. Tsimpis, Flux compactification on smooth, compact three-dimensional toric varieties, JHEP 07 (2010) 073 [arXiv:1005.2194] [SPIRES].

    Article  ADS  Google Scholar 

  38. F. Chen, K. Dasgupta, P. Franche, S. Katz and R. Tatar, Supersymmetric Configurations, Geometric Transitions and New Non-Kähler Manifolds, arXiv:1007.5316 [SPIRES].

  39. F. Chen, K. Dasgupta, P. Franche and R. Tatar, Toward the Gravity Dual of Heterotic Small Instantons, Phys. Rev. D 83 (2011) 046006 [arXiv:1010.5509] [SPIRES].

    ADS  Google Scholar 

  40. M. Becker, K. Dasgupta, A. Knauf and R. Tatar, Geometric transitions, flops and non-Kähler manifolds. I, Nucl. Phys. B 702 (2004) 207 [hep-th/0403288] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Becker, M. Becker, P.S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on non-Kähler complex manifolds. II, Nucl. Phys. B 678 (2004) 19 [hep-th/0310058] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  42. K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nucl. Phys. B 751 (2006) 108 [hep-th/0604137] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Becker, L.-S. Tseng and S.-T. Yau, New Heterotic Non-Kähler Geometries, arXiv:0807.0827 [SPIRES].

  44. K. Behrndt and S. Gukov, Domain walls and superpotentials from M-theory on Calabi-Yau three-folds, Nucl. Phys. B 580 (2000) 225 [hep-th/0001082] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. G. Lopes Cardoso, G. Curio, G. Dall’Agata and D. Lüst, BPS action and superpotential for heterotic string compactifications with fluxes, JHEP 10 (2003) 004 [hep-th/0306088] [SPIRES].

    Article  ADS  Google Scholar 

  46. I. Benmachiche, J. Louis and D. Martinez-Pedrera, The effective action of the heterotic string compactified on manifolds with SU(3) structure, Class. Quant. Grav. 25 (2008) 135006 [arXiv:0802.0410] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B 258 (1985) 46 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. R. Friedman, J. Morgan and E. Witten, Vector bundles and F-theory, Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory fivebranes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  50. P. Griffiths and J. Harris, Principles of Algebraic Geometry’, John Wiley and Sons Inc. (1978).

  51. R. Bott and L.W. Tu, Differential Forms In Algebraic Topology, Springer-Verlag, Germany (1982).

    MATH  Google Scholar 

  52. D. Huybrechts, Complex Geometry, Springer-Verlag Berlin Heidelberg, Germany (2005).

    MATH  Google Scholar 

  53. K. Kodaira and D.C. Spencer, On deformations of complex analytic structures I, Ann. Math. 67 (1958) 328.

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Kodaira and D.C. Spencer, On deformations of complex analytic structures II, Ann. Math. 67 (1958) 403.

    Article  MathSciNet  Google Scholar 

  55. K. Kodaira, A Theorem of Completeness of Characteristic Systems for Analytic Families of Compact Submanifolds of Compact Manifolds, Ann. Math. 75 (1962) 146.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Kachru, S.H. Katz, A.E. Lawrence and J. McGreevy, Open string instantons and superpotentials, Phys. Rev. D 62 (2000) 026001 [hep-th/9912151] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  57. S. Kachru, S.H. Katz, A.E. Lawrence and J. McGreevy, Mirror symmetry for open strings, Phys. Rev. D 62 (2000) 126005 [hep-th/0006047] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  58. S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds, Nucl. Phys. B 584 (2000) 69 [hep-th/9906070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. J. Polchinski and A. Strominger, New Vacua for Type II String Theory, Phys. Lett. B 388 (1996) 736 [hep-th/9510227] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  60. S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. S.H. Katz, Rational curves on Calabi-Yau threefolds, hep-th/9202017 [SPIRES].

  62. K. Hori et al., Mirror symmetry, Oxford University Press, Oxforx U.K. (2003).

    MATH  Google Scholar 

  63. S.H. Katz, A. Klemm and C. Vafa, M-theory, topological strings and spinning black holes, Adv. Theor. Math. Phys. 3 (1999) 1445 [hep-th/9910181] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  64. C. Voisin, Hodge Theory and Complex Algebraic Geometry, I, Cambridge University Press, Cambridge U.K. (2002).

    Book  MATH  Google Scholar 

  65. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3 (1994) 493 [alg-geom/9310003].

    MathSciNet  MATH  Google Scholar 

  66. D. Cox and S. Katz, Mirror symmetry and algebraic geometry, Oxford University Press, Oxford U.K. (1999).

    MATH  Google Scholar 

  67. E. Witten, Phases of N = 2 theories in two dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  68. K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [SPIRES].

  69. P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [SPIRES].

    Article  ADS  Google Scholar 

  70. S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Nucl. Phys. B 433 (1995) 501 [hep-th/9406055] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 2, Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  72. P. Koerber, Lectures on Generalized Complex Geometry for Physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [SPIRES].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  73. N.J. Hitchin, The geometry of three-forms in six and seven dimensions, math/0010054.

  74. S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G 2 structures, math/0202282.

  75. G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [SPIRES].

    Article  ADS  Google Scholar 

  76. M. Gualtieri, Generalized Kähler geometry, arXiv:1007.3485 [SPIRES].

  77. V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti, Remodeling the B-model, Commun. Math. Phys. 287 (2009) 117 [arXiv:0709.1453] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  78. T.W. Grimm and T. Weigand, On Abelian Gauge Symmetries and Proton Decay in Global F-theory GUTs, Phys. Rev. D 82 (2010) 086009 [arXiv:1006.0226] [SPIRES].

    ADS  Google Scholar 

  79. T.W. Grimm, The N = 1 effective action of F-theory compactifications, Nucl. Phys. B 845 (2011) 48 [arXiv:1008.4133] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Klevers.

Additional information

ArXiv ePrint: 1011.6375

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, T.W., Klemm, A. & Klevers, D. Five-brane superpotentials, blow-up geometries and SU(3) structure manifolds. J. High Energ. Phys. 2011, 113 (2011). https://doi.org/10.1007/JHEP05(2011)113

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2011)113

Keywords

Navigation