Skip to main content
Log in

Low-energy probes of a warped extra dimension

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate a natural realization of a light Abelian hidden sector in an extended Randall-Sundrum (RS) model. In addition to the usual RS bulk we consider a second warped space containing a bulk U(1) x gauge theory with a characteristic IR scale of order a GeV. This Abelian hidden sector can couple to the standard model via gauge kinetic mixing on a common UV brane. We show that if such a coupling induces significant mixing between the lightest U(1) x gauge mode and the standard model photon and Z, it can also induce significant mixing with the heavier U(1) x Kaluza-Klein (KK) modes. As a result it might be possible to probe several KK modes in upcoming fixed-target experiments and meson factories, thereby offering a new way to investigate the structure of an extra spacetime dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].

    ADS  Google Scholar 

  2. The ATLAS collaboration, G. Aad et al., Expected performance of the atlas experiment — Detector, trigger and physics, arXiv:0901.0512 [SPIRES].

  3. D.E. Morrissey, T. Plehn and T.M.P. Tait, New physics at the LHC, arXiv:0912.3259 [SPIRES].

  4. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [SPIRES].

    Article  ADS  Google Scholar 

  5. BABAR collaboration, P.F. Harrison and H.R. Quinn, The BABAR physics book: Physics at an asymmetric B factory, SLAC-504 [SPIRES].

  6. ALEPH collaboration, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES].

    ADS  Google Scholar 

  7. ALEPH collaboration, J. Alcaraz, Precision electroweak measurements and constraints on the standard model, arXiv:0911.2604 [SPIRES].

  8. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].

  9. M.A. Luty, 2004 TASI lectures on supersymmetry breaking, hep-th/0509029 [SPIRES].

  10. J. Terning, Modern supersymmetry: dynamics and duality, Clarendon, Oxford U.K. (2006), p. 324 [SPIRES].

  11. A.E. Nelson and N. Seiberg, R symmetry breaking versus supersymmetry breaking, Nucl. Phys. B 416 (1994) 46 [hep-ph/9309299] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Bagger, E. Poppitz and L. Randall, The R axion from dynamical supersymmetry breaking, Nucl. Phys. B 426 (1994) 3 [hep-ph/9405345] [SPIRES].

    Article  ADS  Google Scholar 

  13. D. Shih, Pseudomoduli dark matter, JHEP 09 (2009) 046 [arXiv:0906.3346] [SPIRES].

    Article  ADS  Google Scholar 

  14. B. Keren-Zur, L. Mazzucato and Y. Oz, Dark matter and pseudo-flat directions in weakly coupled SUSY breaking sectors, JHEP 09 (2009) 041 [arXiv:0906.5586] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5.100GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [SPIRES].

    Article  ADS  Google Scholar 

  16. TheFermi LAT collaboration, A.A. Abdo et al., Measurement of the cosmic ray e + plus e spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [SPIRES].

    Article  ADS  Google Scholar 

  17. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [SPIRES].

    ADS  Google Scholar 

  18. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [SPIRES].

    ADS  Google Scholar 

  19. Y. Nomura and J. Thaler, Dark matter through the axion portal, Phys. Rev. D 79 (2009) 075008 [arXiv:0810.5397] [SPIRES].

    ADS  Google Scholar 

  20. F. Chen, J.M. Cline and A.R. Frey, A new twist on excited dark matter: implications for INTEGRAL, PAMELA/ATIC/PPB-BETS, DAMA, Phys. Rev. D 79 (2009) 063530 [arXiv:0901.4327] [SPIRES].

    ADS  Google Scholar 

  21. F. Chen, J.M. Cline and A.R. Frey, Nonabelian dark matter: models and constraints, Phys. Rev. D 80 (2009) 083516 [arXiv:0907.4746] [SPIRES].

    ADS  Google Scholar 

  22. J.T. Ruderman and T. Volansky, Searching for smoking gun signatures of decaying dark matter, arXiv:0907.4373 [SPIRES].

  23. J.T. Ruderman and T. Volansky, Decaying into the hidden sector, JHEP 02 (2010) 024 [arXiv:0908.1570] [SPIRES].

    Article  Google Scholar 

  24. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [SPIRES].

    Article  ADS  Google Scholar 

  27. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. F. Denef, M.R. Douglas and S. Kachru, Physics of string flux compactifications, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [SPIRES].

    Article  ADS  Google Scholar 

  29. N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e + e colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [SPIRES].

    Article  ADS  Google Scholar 

  30. S. Heinemeyer, Y. Kahn, M. Schmitt and M. Velasco, An experiment to search for light dark matter in low-energy ep scattering, arXiv:0705.4056 [SPIRES].

  31. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].

    ADS  Google Scholar 

  32. R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson Adecaying to e + e , arXiv:1001.2557 [SPIRES].

  33. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [SPIRES].

    ADS  Google Scholar 

  34. M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [SPIRES].

    Article  Google Scholar 

  35. P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [SPIRES].

    ADS  Google Scholar 

  36. P. Meade, S. Nussinov, M. Papucci and T. Volansky, Searches for long lived neutral particles, arXiv:0910.4160 [SPIRES].

  37. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [SPIRES].

    ADS  Google Scholar 

  38. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [SPIRES].

    ADS  Google Scholar 

  39. B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, arXiv:0911.4938 [SPIRES].

  40. R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e - colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [SPIRES].

    ADS  Google Scholar 

  41. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [SPIRES].

    Article  ADS  Google Scholar 

  42. F. Bossi, The role of KLOE and KLOE-2 in the search for a secluded gauge sector, arXiv:0904.3815 [SPIRES].

  43. P.-f. Yin, J. Liu and S.-h. Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679 (2009) 362 [arXiv:0904.4644] [SPIRES].

    ADS  Google Scholar 

  44. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [SPIRES].

    Article  ADS  Google Scholar 

  45. E.J. Chun and J.-C. Park, Dark matter and sub-GeV hidden U(1) in GMSB models, JCAP 02 (2009) 026 [arXiv:0812.0308] [SPIRES].

    ADS  Google Scholar 

  46. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [SPIRES].

    Article  ADS  Google Scholar 

  47. Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for inelastic dark matter, JHEP 05 (2009) 076 [arXiv:0901.0557] [SPIRES].

    Article  ADS  Google Scholar 

  48. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [SPIRES].

    ADS  Google Scholar 

  49. A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [SPIRES].

    Article  ADS  Google Scholar 

  50. D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [SPIRES].

    Article  ADS  Google Scholar 

  51. D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, arXiv:0903.3945 [SPIRES].

  52. M. Lisanti and J.G. Wacker, Parity violation in composite inelastic dark matter models, arXiv:0911.4483 [SPIRES].

  53. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].

    ADS  Google Scholar 

  54. K.M. Zurek, TASI 2009 lectures: searching for unexpected physics at the LHC, arXiv:1001.2563 [SPIRES].

  55. M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [SPIRES].

  56. H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [SPIRES].

    Article  ADS  Google Scholar 

  57. H. Georgi, Another odd thing about unparticle physics, Phys. Lett. B 650 (2007) 275 [arXiv:0704.2457] [SPIRES].

    ADS  Google Scholar 

  58. M.A. Stephanov, Deconstruction of unparticles, Phys. Rev. D 76 (2007) 035008 [arXiv:0705.3049] [SPIRES].

    ADS  Google Scholar 

  59. A. Friedland and M. Giannotti, Extra dimensions, orthopositronium decay and stellar cooling, arXiv:0709.2164 [SPIRES].

  60. G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  61. A. Falkowski and M. Pérez-Victoria, Holographic un-Higgs, Phys. Rev. D 79 (2009) 035005 [arXiv:0810.4940] [SPIRES].

    ADS  Google Scholar 

  62. A. Falkowski and M. Pérez-Victoria, Electroweak precision observables and the un-Higgs, JHEP 12 (2009) 061 [arXiv:0901.3777] [SPIRES].

    Article  ADS  Google Scholar 

  63. A. Friedland, M. Giannotti and M. Graesser, On the RS2 realization of unparticles, Phys. Lett. B 678 (2009) 149 [arXiv:0902.3676] [SPIRES].

    ADS  Google Scholar 

  64. A. Friedland, M. Giannotti and M.L. Graesser, Vector bosons in the Randall-Sundrum 2 and Lykken-Randall models and unparticles, JHEP 09 (2009) 033 [arXiv:0905.2607] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  65. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [SPIRES].

    ADS  Google Scholar 

  67. R. Foot and X.-G. He, Comment on ZZ′ mixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [SPIRES].

    ADS  Google Scholar 

  68. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology on a slice of AdS 5 ×M δ spacetime, JHEP 04 (2003) 001 [hep-ph/0211377] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. K.L. McDonald, Warping the universal extra dimensions, Phys. Rev. D 80 (2009) 024038 [arXiv:0905.3006] [SPIRES].

    ADS  Google Scholar 

  70. A. Hebecker and J. March-Russell, The ubiquitous throat, Nucl. Phys. B 781 (2007) 99 [hep-th/0607120] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  71. B.v. Harling, A. Hebecker and T. Noguchi, Energy transfer between throats from a 10D perspective, JHEP 11 (2007) 042 [arXiv:0705.3648] [SPIRES].

    Article  Google Scholar 

  72. G. Cacciapaglia, C. Csáki, C. Grojean and J. Terning, Field theory on multi-throat backgrounds, Phys. Rev. D 74 (2006) 045019 [hep-ph/0604218] [SPIRES].

    ADS  Google Scholar 

  73. N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  74. R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  75. M. Pérez-Victoria, Randall-Sundrum models and the regularized AdS/CFT correspondence, JHEP 05 (2001) 064 [hep-th/0105048] [SPIRES].

    Article  Google Scholar 

  76. K. Agashe, A. Falkowski, I. Low and G. Servant, KK parity in warped extra dimension, JHEP 04 (2008) 027 [arXiv:0712.2455] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  77. S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Small numbers from tunneling between brane throats, Phys. Rev. D 64 (2001) 121702 [hep-th/0104239] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  78. S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Generating small numbers by tunneling in multi-throat compactifications, Int. J. Mod. Phys. A 19 (2004) 2657 [hep-th/0106128] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  79. G. Cacciapaglia, C. Csáki, C. Grojean, M. Reece and J. Terning, Top and bottom: a brane of their own, Phys. Rev. D 72 (2005) 095018 [hep-ph/0505001] [SPIRES].

    ADS  Google Scholar 

  80. T. Flacke, B. Gripaios, J. March-Russell and D. Maybury, Warped axions, JHEP 01 (2007) 061 [hep-ph/0611278] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  81. T. Flacke and D. Maybury, Aspects of axion phenomenology in a slice of AdS 5, JHEP 03 (2007) 007 [hep-ph/0612126] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  82. B. Gripaios, Neutrinos in a sterile throat, Nucl. Phys. B 768 (2007) 157 [hep-ph/0611218] [SPIRES].

    Article  ADS  Google Scholar 

  83. B.v. Harling and A. Hebecker, Sequestered dark matter, JHEP 05 (2008) 031 [arXiv:0801.4015] [SPIRES].

    Article  ADS  Google Scholar 

  84. A. Bechinger and G. Seidl, Resonant Dirac leptogenesis on throats, Phys. Rev. D 81 (2010) 065015 [arXiv:0907.4341] [SPIRES].

    ADS  Google Scholar 

  85. B. Batell and T. Gherghetta, Localized U(1) gauge fields, millicharged particles and holography, Phys. Rev. D 73 (2006) 045016 [hep-ph/0512356] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  86. K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [SPIRES].

    ADS  Google Scholar 

  87. S.A. Abel and B.W. Schofield, Brane-antibrane kinetic mixing, millicharged particles and SUSY breaking, Nucl. Phys. B 685 (2004) 150 [hep-th/0311051] [SPIRES].

    Article  ADS  Google Scholar 

  88. S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  89. M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [SPIRES].

    Article  ADS  Google Scholar 

  90. M. Goodsell and A. Ringwald, Light hidden-sector U(1)s in string compactifications, arXiv:1002.1840 [SPIRES].

  91. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  92. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\bar b \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [SPIRES].

    ADS  Google Scholar 

  93. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Light Kaluza-Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  94. M.S. Carena, E. Ponton, J. Santiago and C.E.M. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [SPIRES].

    ADS  Google Scholar 

  95. C. Csáki, C. Grojean, H. Murayama, L. Pilo and J. Terning, Gauge theories on an interval: unitarity without a Higgs, Phys. Rev. D 69 (2004) 055006 [hep-ph/0305237] [SPIRES].

    ADS  Google Scholar 

  96. C. Csáki, C. Grojean, L. Pilo and J. Terning, Towards a realistic model of Higgsless electroweak symmetry breaking, Phys. Rev. Lett. 92 (2004) 101802 [hep-ph/0308038] [SPIRES].

    Article  ADS  Google Scholar 

  97. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  98. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [SPIRES].

    Article  ADS  Google Scholar 

  99. C. Csáki, A. Falkowski and A. Weiler, The flavor of the composite pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [SPIRES].

    Article  ADS  Google Scholar 

  100. A. Pomarol, Grand unified theories without the desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [SPIRES].

    Article  ADS  Google Scholar 

  101. K.L. McDonald and D.E. Morrissey, Signals of a warped hidden sector at the luminosity frontier, in preparation.

  102. C. Csáki, M. Reece and J. Terning, The AdS/QCD correspondence: still undelivered, JHEP 05 (2009) 067 [arXiv:0811.3001] [SPIRES].

    Article  ADS  Google Scholar 

  103. W.-F. Chang, J.N. Ng and J.M.S. Wu, Non-supersymmetric new physics and polarized Møller scattering, Phys. Rev. D 79 (2009) 055016 [arXiv:0901.0613] [SPIRES].

    ADS  Google Scholar 

  104. J. Kumar and J.D. Wells, LHC and ILC probes of hidden-sector gauge bosons, Phys. Rev. D 74 (2006) 115017 [hep-ph/0606183] [SPIRES].

    ADS  Google Scholar 

  105. W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev. D 74 (2006) 095005 [Erratum ibid. D 79 (2009) 039902] [hep-ph/0608068] [SPIRES].

    ADS  Google Scholar 

  106. D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z′ extension with kinetic mixing and milli-charged dark matter from the hidden sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [SPIRES].

    ADS  Google Scholar 

  107. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  108. BABAR collaboration, B. Aubert et al., Search for dimuon decays of a light scalar in radiative transitions Y (3S) → γA 0, arXiv:0902.2176 [SPIRES].

  109. BABAR collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [SPIRES].

    Article  ADS  Google Scholar 

  110. M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Model-independent implications of the e + , e , anti-proton cosmic ray spectra on properties of dark matter, Nucl. Phys. B 813 (2009) 1 [arXiv:0809.2409] [SPIRES].

    Article  ADS  Google Scholar 

  111. XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett. 100 (2008) 021303 [arXiv:0706.0039] [SPIRES].

    Article  ADS  Google Scholar 

  112. The CDMS-II collaboration, Z. Ahmed et al., Results from the final exposure of the CDMS II experiment, arXiv:0912.3592 [SPIRES].

  113. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  114. P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [SPIRES].

    Article  ADS  Google Scholar 

  115. L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054 [hep-ph/0607158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  116. J. Kaplan, P.C. Schuster and N. Toro, Avoiding an empty universe in RS I models and large-N gauge theories, hep-ph/0609012 [SPIRES].

  117. B. Hassanain, J. March-Russell and M. Schvellinger, Warped deformed throats have faster (electroweak) phase transitions, JHEP 10 (2007) 089 [arXiv:0708.2060] [SPIRES].

    Article  ADS  Google Scholar 

  118. S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev. D 70 (2004) 043506 [astro-ph/0403291] [SPIRES].

    ADS  Google Scholar 

  119. T. Moroi and L. Randall, Wino cold dark matter from anomaly-mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [SPIRES].

    Article  ADS  Google Scholar 

  120. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [SPIRES].

    ADS  Google Scholar 

  121. C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [SPIRES].

    Article  ADS  Google Scholar 

  122. C. Boehm, P. Fayet and J. Silk, Light and heavy dark matter particles, Phys. Rev. D 69 (2004) 101302 [hep-ph/0311143] [SPIRES].

    ADS  Google Scholar 

  123. P. Fayet, Light spin-1/2 or spin-0 dark matter particles, Phys. Rev. D 70 (2004) 023514 [hep-ph/0403226] [SPIRES].

    ADS  Google Scholar 

  124. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES].

    ADS  Google Scholar 

  125. D. Hooper and K.M. Zurek, A natural supersymmetric model with MeV dark matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [SPIRES].

    ADS  Google Scholar 

  126. J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [SPIRES].

    Article  ADS  Google Scholar 

  127. K.M. Zurek, Multi-component dark matter, Phys. Rev. D 79 (2009) 115002 [arXiv:0811.4429] [SPIRES].

    ADS  Google Scholar 

  128. P. Gondolo and G. Gelmini, Compatibility of DAMA dark matter detection with other searches, Phys. Rev. D 71 (2005) 123520 [hep-ph/0504010] [SPIRES].

    ADS  Google Scholar 

  129. F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047 [arXiv:0806.3989] [SPIRES].

    Article  ADS  Google Scholar 

  130. C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [SPIRES].

    ADS  Google Scholar 

  131. C. Boehm, D. Hooper, J. Silk, M. Casse and J. Paul, MeV dark matter: has it been detected?, Phys. Rev. Lett. 92 (2004) 101301 [astro-ph/0309686] [SPIRES].

    Article  ADS  Google Scholar 

  132. R. Foot, H. Lew and R.R. Volkas, A model with fundamental improper space-time symmetries, Phys. Lett. B 272 (1991) 67 [SPIRES].

    ADS  Google Scholar 

  133. R. Foot, Mirror dark matter, Int. J. Mod. Phys. A 22 (2007) 4951 [arXiv:0706.2694] [SPIRES].

    ADS  Google Scholar 

  134. T. Gherghetta and B. Harling, A warped model of dark matter, JHEP 04 (2010) 039 [arXiv:1002.2967] [SPIRES].

    Article  Google Scholar 

  135. D. Bunk and J. Hubisz, Revealing Randall-Sundrum hidden valleys, arXiv:1002.3160 [SPIRES].

  136. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phenomenology of the Randall-Sundrum gauge hierarchy model, Phys. Rev. Lett. 84 (2000) 2080 [hep-ph/9909255] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Morrissey.

Additional information

ArXiv ePrint: hep-ph/1002.3361

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, K.L., Morrissey, D.E. Low-energy probes of a warped extra dimension. J. High Energ. Phys. 2010, 56 (2010). https://doi.org/10.1007/JHEP05(2010)056

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)056

Keywords

Navigation