Skip to main content
Log in

Free particles from Brauer algebras in complex matrix models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The gauge invariant degrees of freedom of matrix models based on an N × N complex matrix, with U(N) gauge symmetry, contain hidden free particle structures. These are exhibited using triangular matrix variables via the Schur decomposition. The Brauer algebra basis for complex matrix models developed earlier is useful in projecting to a sector which matches the state counting of N free fermions on a circle. The Brauer algebra projection is characterized by the vanishing of a scale invariant laplacian constructed from the complex matrix. The special case of N = 2 is studied in detail: the ring of gauge invariant functions as well as a ring of scale and gauge invariant differential operators are characterized completely. The orthonormal basis of wavefunctions in this special case is completely characterized by a set of five commuting Hamiltonians, which display free particle structures. Applications to the reduced matrix quantum mechanics coming from radial quantization in \( \mathcal{N} = 4 \) SYM are described. We propose that the string dual of the complex matrix harmonic oscillator quantum mechanics has an interpretation in terms of strings and branes in 2 + 1 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965) 440.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [SPIRES].

    MathSciNet  Google Scholar 

  3. J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from Anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. V. Balasubramanian, M. Berkooz, A. Naqvi and M.J. Strassler, Giant gravitons in conformal field theory, JHEP 04 (2002) 034 [hep-th/0107119] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Jevicki and S. Ramgoolam, Non-commutative gravity from the AdS/CFT correspondence, JHEP 04 (1999) 032 [hep-th/9902059] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. R.d.M. Koch and J. Murugan, Emergent spacetime, arXiv:0911.4817 [SPIRES].

  8. D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. B.U. Eden, P.S. Howe, A. Pickering, E. Sokatchev and P.C. West, Four-point functions in N = 2 superconformal field theories, Nucl. Phys. B 581 (2000) 523 [hep-th/0001138] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. B.U. Eden, P.S. Howe, E. Sokatchev and P.C. West, Extremal and next-to-extremal n-point correlators in four-dimensional SCFT, Phys. Lett. B 494 (2000) 141 [hep-th/0004102] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. Y. Kimura and S. Ramgoolam, Branes, anti-branes and Brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. J.R. Stembridge, Rational tableaux and the tensor algebra of gl(n), J. Combi. Theory A 46 (1987) 79.

    Article  MathSciNet  Google Scholar 

  14. K. Koike, On the decomposition of tensor products of the representations of the classical groups: by means of the universal characters, Adv. Math. 74 (1989) 57.

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee and J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Algebra 166 (1994) 529.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Halverson, Characters of the centralizer algebras of mixed tensor representations of Gl(r, C) and the quantum group U q (gl(r, C)), Pacific J. Math 174 (1996) 359.

    MATH  MathSciNet  Google Scholar 

  17. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].

    MATH  MathSciNet  ADS  Google Scholar 

  18. V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, Entropy of near-extremal black holes in AdS 5, JHEP 05 (2008) 067 [arXiv:0707.3601] [SPIRES].

    Article  ADS  Google Scholar 

  19. I.K. Kostov, M. Staudacher and T. Wynter, Complex matrix models and statistics of branched coverings of 2D surfaces, Commun. Math. Phys. 191 (1998) 283 [hep-th/9703189] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. C. Kristjansen, J. Plefka, G.W. Semenoff and M. Staudacher, A new double-scaling limit of N = 4 super Yang-Mills theory and PP-wave strings, Nucl. Phys. B 643 (2002) 3 [hep-th/0205033] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Akemann and G. Vernizzi, Characteristic polynomials of complex random matrix models, Nucl. Phys. B 660 (2003) 532 [hep-th/0212051] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. A. Alexandrov, A. Mironov and A. Morozov, BGWM as second constituent of complex matrix model, JHEP 12 (2009) 053 [arXiv:0906.3305] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Cox, M. De Visscher, S. Doty and P. Martin, On the blocks of the walled Brauer algebra, J. Algebra 320 (2007) 169 [arXiv:0709.0851].

    Article  Google Scholar 

  24. M. Masuku and J.P. Rodrigues, Laplacians in polar matrix coordinates and radial fermionization in higher dimensions, arXiv:0911.2846 [SPIRES].

  25. Y. Kimura and S. Ramgoolam, Enhanced symmetries of gauge theory and resolving the spectrum of local operators, Phys. Rev. D 78 (2008) 126003 [arXiv:0807.3696] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. I.R. Klebanov, String theory in two-dimensions, hep-th/9108019 [SPIRES].

  27. P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [SPIRES].

  28. S. Alexandrov, Matrix quantum mechanics and two-dimensional string theory in non-trivial backgrounds, hep-th/0311273 [SPIRES].

  29. M.R. Douglas, Conformal field theory techniques for large-N group theory, hep-th/9303159 [SPIRES].

  30. M.R. Douglas, Conformal field theory techniques in large-N Yang-Mills theory, hep-th/9311130 [SPIRES].

  31. L.-L. Chau and Y. Yu, Unitary polynomials in normal matrix models and Laughlin’s wave functions for the fractional quantum Hall effect, UCDPHYS-PUB-91-13 [SPIRES].

  32. L.-L. Chau and O. Zaboronsky, On the structure of correlation functions in the normal matrix model, Commun. Math. Phys. 196 (1998) 203 [hep-th/9711091] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. I.R. Klebanov, J.M. Maldacena and N. Seiberg, Unitary and complex matrix models as 1D type 0 strings, Commun. Math. Phys. 252 (2004) 275 [hep-th/0309168] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. C. Itzykson and J.B. Zuber, The planar approximation. 2, J. Math. Phys. 21 (1980) 411 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. J.P. Rodrigues, Large-N spectrum of two matrices in a harmonic potential and BMN energies, JHEP 12 (2005) 043 [hep-th/0510244] [SPIRES].

    Article  ADS  Google Scholar 

  36. J.P. Rodrigues and A. Zaidi, Non supersymmetric strong coupling background from the large-N quantum mechanics of two matrices coupled via a Yang-Mills interaction, arXiv:0807.4376 [SPIRES].

  37. C.D. Meyer, Matrix analysis and applied linear algebra, SIAM, U.S.A (2000), see pag. 508.

    MATH  Google Scholar 

  38. M.L. Mehta, Random matrices, 3rd edition, Academic Press, U.S.A. (2004).

    MATH  Google Scholar 

  39. Y. Takayama and A. Tsuchiya, Complex matrix model and fermion phase space for bubbling AdS geometries, JHEP 10 (2005) 004 [hep-th/0507070] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. L. Castellani, On G/H geometry and its use in M-theory compactifications, Annals Phys. 287 (2001) 1 [hep-th/9912277] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. G. Olshanski, An introduction to harmonic analysis on the infinite symmetric group, math/0311369.

  42. A.A. Kirillov, Elements of the theory of representations, Springer, U.S.A. (1972).

    Google Scholar 

  43. T. Ortín, Gravity and Strings, Cambridge University Press, Cambridge U.K. (2007), pag. 603.

    Google Scholar 

  44. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  45. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  46. D.P. Zelobenko, Compact Lie groups and their representations, American Mathematical Society, U.S.A. (1973), see p. 156.

    MATH  Google Scholar 

  47. S. Corley and S. Ramgoolam, Finite factorization equations and sum rules for BPS correlators in N = 4 SYM theory, Nucl. Phys. B 641 (2002) 131 [hep-th/0205221] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. F.A. Dolan, Counting BPS operators in N = 4 SYM, Nucl. Phys. B 790 (2008) 432 [arXiv:0704.1038] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  50. R. Bhattacharyya, S. Collins and R.d.M. Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [SPIRES].

    Article  ADS  Google Scholar 

  51. T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Collins, Restricted Schur polynomials and finite N counting, Phys. Rev. D 79 (2009) 026002 [arXiv:0810.4217] [SPIRES].

    ADS  Google Scholar 

  53. J.F. Willenbring, Stable Hilbert series of S(g)K for classical groups, math/0510649.

  54. A. Hashimoto, S. Hirano and N. Itzhaki, Large branes in AdS and their field theory dual, JHEP 08 (2000) 051 [hep-th/0008016] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. A. Ghodsi, A.E. Mosaffa, O. Saremi and M.M. Sheikh-Jabbari, LLL vs. LLM: half BPS sector of N = 4 SYM equals to quantum Hall system, Nucl. Phys. B 729 (2005) 467 [hep-th/0505129] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  56. J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998), see pag. 39.

    Google Scholar 

  57. T. Yoneya, Extended fermion representation of multi-charge 1/2-BPS operators in AdS/CFT: towards field theory of D-branes, JHEP 12 (2005) 028 [hep-th/0510114] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. V. Pasquier, A lecture on the Calogero-Sutherland models, hep-th/9405104 [SPIRES].

  59. A. Agarwal and A.P. Polychronakos, BPS operators in N = 4 SYM: Calogero models and 2D fermions, JHEP 08 (2006) 034 [hep-th/0602049] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. A.P. Polychronakos, Physics and mathematics of Calogero particles, J. Phys. A 39 (2006) 12793 [hep-th/0607033] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  61. A. Donos, A. Jevicki and J.P. Rodrigues, Matrix model maps in AdS/CFT, Phys. Rev. D 72 (2005) 125009 [hep-th/0507124] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted Schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [SPIRES].

    Article  ADS  Google Scholar 

  63. Y. Kimura, Non-holomorphic multi-matrix gauge invariant operators based on Brauer algebra, JHEP 12 (2009) 044 [arXiv:0910.2170] [SPIRES].

    Article  ADS  Google Scholar 

  64. J. Huebschmann, G. Rudolph and M. Schmidt, A lattice gauge model for quantum mechanics on a stratified space, Commun. Math. Phys. 286 (2009) 459 [hep-th/0702017] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. J.A. Minahan, The SU(2) sector in AdS/CFT, Fortsch. Phys. 53 (2005) 828 [hep-th/0503143] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. N. Itzhaki and J. McGreevy, The large-N harmonic oscillator as a string theory, Phys. Rev. D 71 (2005) 025003 [hep-th/0408180] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  68. E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  69. D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Turton.

Additional information

ArXiv ePrint: 0911.4408

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Ramgoolam, S. & Turton, D. Free particles from Brauer algebras in complex matrix models. J. High Energ. Phys. 2010, 52 (2010). https://doi.org/10.1007/JHEP05(2010)052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2010)052

Keywords

Navigation