Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 871))

Abstract

Holographic methods are used to investigate the low temperature limit, including quantum critical behavior, of strongly coupled 4-dimensional gauge theories in the presence of an external magnetic field, and finite charge density. In addition to the metric, the dual gravity theory contains a Maxwell field with Chern-Simons coupling. In the absence of charge, the magnetic field induces an RG flow to an infrared \(\mathit{AdS}_{3} \times {\bf R}^{2}\) geometry, which is dual to a 2-dimensional CFT representing strongly interacting fermions in the lowest Landau level. Two asymptotic Virasoro algebras and one chiral Kac-Moody algebra arise as emergent symmetries in the IR. Including a nonzero charge density reveals a quantum critical point when the magnetic field reaches a critical value whose scale is set by the charge density. The critical theory is probed by the study of long-distance correlation functions of the boundary stress tensor and current. All quantities of major physical interest in this system, such as critical exponents and scaling functions, can be computed analytically. We also study an asymptotically AdS 6 system whose magnetic field induced quantum critical point is governed by an IR Lifshitz geometry, holographically dual to a D=2+1 field theory. The behavior of these holographic theories shares important similarities with that of real world quantum critical systems obtained by tuning a magnetic field, and may be relevant to materials such as Strontium Ruthenates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Einstein indices μ,ν=0,1,2,3 will be used in 3+1-dimensions, while Einstein indices M,N=0,1,2,3,4 will be used in 4+1-dimensions. Our conventions are g=−det(g MN ), as well as \(R^{L}{}_{\mathit{MNK}} = \partial _{K} \varGamma^{L}_{\mathit{MN}} - \partial _{N} \varGamma^{L}_{\mathit{MK}} +\varGamma^{P}_{\mathit{MN}} \varGamma^{L}_{\mathit{KP}} - \varGamma^{P}_{\mathit{MK}}\varGamma^{L}_{\mathit{NP}}\) with R MN =R L MLN and R=g MN R MN .

References

  1. T. Andrade, J.I. Jottar, R.G. Leigh, Boundary conditions and unitarity: the Maxwell-Chern-Simons system in AdS3/CFT2. J. High Energy Phys. 1205, 071 (2012). arXiv:1111.5054 [hep-th]

    Article  ADS  Google Scholar 

  2. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string theory and gravity. Phys. Rep. 323, 183 (2000). arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Almheiri, Magnetic AdS2×R 2 at weak and strong coupling. arXiv:1112.4820 [hep-th]

  4. A. Almuhairi, AdS3 and AdS2 magnetic brane solutions. arXiv:1011.1266 [hep-th]

  5. A. Almuhairi, J. Polchinski, Magnetic AdS×R 2: supersymmetry and stability. arXiv:1108.1213 [hep-th]

  6. D. Anninos, G. Compere, S. de Buyl, S. Detournay, M. Guica, The curious case of null warped space. J. High Energy Phys. 1011, 119 (2010). arXiv:1005.4072 [hep-th]

    Article  ADS  Google Scholar 

  7. V. Balasubramanian, P. Kraus, Space-time and the holographic renormalization group. Phys. Rev. Lett. 83, 3605 (1999). hep-th/9903190

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. V. Balasubramanian, P. Kraus, A stress tensor for anti-de Sitter gravity. Commun. Math. Phys. 208, 413 (1999). arXiv:hep-th/9902121

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. K. Balasubramanian, J. McGreevy, Gravity duals for non-relativistic CFTs. Phys. Rev. Lett. 101, 061601 (2008). arXiv:0804.4053 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  10. J. de Boer, E.P. Verlinde, H.L. Verlinde, On the holographic renormalization group. J. High Energy Phys. 0008, 003 (2000). hep-th/9912012

    Article  Google Scholar 

  11. H. Braviner, R. Gregory, S.F. Ross, Flows involving Lifshitz solutions. Class. Quant. Grav. 28, 225028 (2011). arXiv:1108.3067 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  12. J.D. Brown, M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity. Commun. Math. Phys. 104, 207 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. M. Cubrovic, J. Zaanen, K. Schalm, Fermions and the AdS/CFT correspondence: quantum phase transitions and the emergent Fermi-liquid. arXiv:0904.1993 [hep-th]

  14. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence. Commun. Math. Phys. 217, 595 (2001). arXiv:hep-th/0002230

    Article  ADS  MATH  Google Scholar 

  15. E. D’Hoker, D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence. hep-th/0201253

  16. E. D’Hoker, P. Kraus, Magnetic brane solutions in AdS. J. High Energy Phys. 0910, 088 (2009). arXiv:0908.3875 [hep-th]

    Article  MathSciNet  Google Scholar 

  17. E. D’Hoker, P. Kraus, Charged magnetic brane solutions in AdS5 and the fate of the third law of thermodynamics. arXiv:0911.4518 [hep-th]

  18. E. D’Hoker, P. Kraus, Holographic metamagnetism, quantum criticality, and crossover behavior. J. High Energy Phys. 1005, 083 (2010). arXiv:1003.1302 [hep-th]

    Article  MathSciNet  Google Scholar 

  19. E. D’Hoker, P. Kraus, Magnetic field induced quantum criticality via new asymptotically AdS5 solutions. Class. Quant. Grav. 27, 215022 (2010). arXiv:1006.2573 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  20. E. D’Hoker, P. Kraus, Charged magnetic brane correlators and twisted Virasoro algebras. Phys. Rev. D 84, 065010 (2011). arXiv:1105.3998 [hep-th]

    Article  ADS  Google Scholar 

  21. E. D’Hoker, P. Kraus, Charge expulsion from black brane horizons, and holographic quantum criticality in the plane. arXiv:1202.2085 [hep-th]

  22. E. D’Hoker, P. Kraus, A. Shah, RG flow of magnetic brane correlators. J. High Energy Phys. 1104, 039 (2011). arXiv:1012.5072 [hep-th]

    Article  MathSciNet  Google Scholar 

  23. S.K. Domokos, J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD. Phys. Rev. Lett. 99, 141602 (2007). arXiv:0704.1604 [hep-ph]

    Article  ADS  Google Scholar 

  24. A. Donos, J.P. Gauntlett, Helical superconducting black holes. Phys. Rev. Lett. 108, 211601 (2012). arXiv:1203.0533 [hep-th]

    Article  ADS  Google Scholar 

  25. A. Donos, J.P. Gauntlett, C. Pantelidou, Spatially modulated instabilities of magnetic black branes. J. High Energy Phys. 1201, 061 (2012). arXiv:1109.0471 [hep-th]

    Article  ADS  Google Scholar 

  26. A. Donos, J.P. Gauntlett, C. Pantelidou, Magnetic and electric AdS solutions in string- and M-theory. arXiv:1112.4195 [hep-th]

  27. T. Faulkner, H. Liu, J. McGreevy, D. Vegh, Emergent quantum criticality, Fermi surfaces, and AdS2. Phys. Rev. D 83, 125002 (2011). arXiv:0907.2694 [hep-th]

    Article  ADS  Google Scholar 

  28. T. Faulkner, H. Liu, M. Rangamani, Integrating out geometry: holographic Wilsonian RG and the membrane paradigm. J. High Energy Phys. 1108, 051 (2011). arXiv:1010.4036

    MathSciNet  ADS  Google Scholar 

  29. C. Fefferman, C.R. Graham, Conformal invariance, in Elie Cartan et les Mathématiques d’aujourd’hui, Astérisque (1985), p. 95

    Google Scholar 

  30. E. Fradkin, S.A. Kivelson, M.J. Lawler, J.P. Eisenstein, A.P. Mackenzie, Nematic Fermi fluids in condensed matter physics. Ann. Rev. Condens. Matter Phys. 1, 153 (2010). arXiv:0910.4166

    Article  ADS  Google Scholar 

  31. J.P. Gauntlett, O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions. Phys. Rev. D 76, 126007 (2007). arXiv:0707.2315 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  32. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2004)

    MATH  Google Scholar 

  33. K. Goldstein, S. Kachru, S. Prakash, S.P. Trivedi, Holography of charged dilaton black holes. J. High Energy Phys. 1008 078 (2010). arXiv:0911.3586 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  34. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109

    Article  MathSciNet  ADS  Google Scholar 

  35. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009). arXiv:0903.3246 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  36. S.A. Hartnoll, L. Huijse, Fractionalization of holographic Fermi surfaces. arXiv:1111.2606 [hep-th]

  37. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]

    Article  ADS  Google Scholar 

  38. I. Heemskerk, J. Polchinski, Holographic and Wilsonian renormalization groups. J. High Energy Phys. 1106, 031 (2011). arXiv:1010.1264

    Article  MathSciNet  ADS  Google Scholar 

  39. J.A. Hertz, Quantum critical phenomena. Phys. Rev. B 14, 1165 (1976)

    Article  ADS  Google Scholar 

  40. C.P. Herzog, Lectures on holographic superfluidity and superconductivity. J. Phys. A 42, 343001 (2009). arXiv:0904.1975 [hep-th]

    Article  MathSciNet  Google Scholar 

  41. N. Iizuka, K. Maeda, Study of anisotropic black branes in asymptotically anti-de Sitter. arXiv:1204.3008 [hep-th]

  42. N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar, S.P. Trivedi, Bianchi attractors: a classification of extremal black brane geometries. arXiv:1201.4861 [hep-th]

  43. K. Jensen, A. Karch, E.G. Thompson, A holographic quantum critical point at finite magnetic field and finite density. arXiv:1002.2447 [hep-th]

  44. S. Kachru, X. Liu, M. Mulligan, Gravity duals of Lifshitz-like fixed points. Phys. Rev. D 78, 106005 (2008). arXiv:0808.1725 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  45. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: ‘Event by event P and CP violation’. Nucl. Phys. A 803, 227 (2008). arXiv:0711.0950 [hep-ph]

    Article  ADS  Google Scholar 

  46. I.R. Klebanov, TASI lectures: introduction to the AdS/CFT correspondence. hep-th/0009139

  47. G. Lifschytz, M. Lippert, Holographic magnetic phase transition. Phys. Rev. D 80, 066007 (2009). arXiv:0906.3892 [hep-th]

    Article  ADS  Google Scholar 

  48. H. Liu, J. McGreevy, D. Vegh, Non-Fermi liquids from holography. Phys. Rev. D 83, 065029 (2011). arXiv:0903.2477 [hep-th]

    Article  ADS  Google Scholar 

  49. H.v. Lohneysen, A. Rosch, M. Mojta, P. Wolfle, Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007)

    Article  ADS  Google Scholar 

  50. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)]. arXiv:hep-th/9711200

    MathSciNet  ADS  MATH  Google Scholar 

  51. A.J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993)

    Article  ADS  Google Scholar 

  52. A.J. Millis, A.J. Schofield, G.G. Lonzarich, S.A. Grigera, Metamagnetic quantum criticality in metals. Phys. Rev. Lett. 88, 217204 (2002)

    Article  ADS  Google Scholar 

  53. S. Nakamura, H. Ooguri, C.S. Park, Gravity dual of spatially modulated phase. Phys. Rev. D 81, 044018 (2010). arXiv:0911.0679 [hep-th]

    Article  ADS  Google Scholar 

  54. V. Oganesyan, S.A. Kivelson, E. Fradkin, Quantum theory of a nematic Fermi fluid. Phys. Rev. B 64, 195109 (2001)

    Article  ADS  Google Scholar 

  55. J. Polchinski, Introduction to gauge/gravity duality. arXiv:1010.6134 [hep-th]

  56. G. Policastro, D.T. Son, A.O. Starinets, The shear viscosity of strongly coupled N=4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). hep-th/0104066

    Article  ADS  Google Scholar 

  57. A.W. Rost, R.S. Perry, J.-F. Mercure, A.P. Mackenzie, S.A. Grigera, Entropy landscape of phase formation associated with quantum criticality in Sr3Ru2O7. Science 325(5946), 1360–1363 (2009)

    Article  ADS  Google Scholar 

  58. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, New York, 2011)

    Book  MATH  Google Scholar 

  59. N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics. Phys. Lett. B 388, 753 (1996). hep-th/9608111

    Article  MathSciNet  ADS  Google Scholar 

  60. D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry. Phys. Rev. D 78, 046003 (2008). arXiv:0804.3972 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  61. N. Ogawa, T. Takayanagi, T. Ugajin, Holographic Fermi surfaces and entanglement entropy. J. High Energy Phys. 1201, 125 (2012). arXiv:1111.1023 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  62. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF grant PHY-07-57702.

During the course of this entire project, we have benefited from helpful conversations and correspondence with several colleagues, and we wish to thank here Vijay Balasubramanian, David Berenstein, Sudip Chakravarty, Geoffrey Compère, Jan de Boer, Frédéric Denef, Stéphane Detournay, Tom Faulkner, Jerome Gauntlett, Sean Hartnoll, Gary Horowitz, Finn Larsen, Alex Maloney, Eric Perlmutter, Joe Polchinski, Matt Roberts, Joan Simon, and especially Akhil Shah who collaborated on one of our papers. During parts of this work, we have enjoyed the hospitality of the KITP during the “Quantum Criticality and AdS/CFT Correspondence” program in 2009, and of the Aspen Center for Physics in 2011. One of us (E.D.) wishes to thank the Laboratoire de Physique Théorique de l’Ecole Normale Supérieure, and the Laboratoire de Physqiue Théorique et Hautes Energies, CNRS and Université Pierre et Marie Curie—Paris 6, and especially Constantin Bachas and Jean-Bernard Zuber for their warm hospitality while part of this work was being completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D’Hoker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Hoker, E., Kraus, P. (2013). Quantum Criticality via Magnetic Branes. In: Kharzeev, D., Landsteiner, K., Schmitt, A., Yee, HU. (eds) Strongly Interacting Matter in Magnetic Fields. Lecture Notes in Physics, vol 871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37305-3_18

Download citation

Publish with us

Policies and ethics