Skip to main content
Log in

Aspects of three-dimensional spin-4 gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss some interesting holographical aspects of three dimensional higher-spin gravity with a negative cosmological constant in the framework of SL(4, \( \mathbb{R} \)) × SL(4, \( \mathbb{R} \)) Chern-Simons theory. Using a recently found technique, we construct explicitly a solution that can be interpreted as spin-4 generalization of the BTZ solution, and demonstrate how \( {\mathcal{W}_4} \) symmetry and the higher-spin Ward identities arise from the bulk equations of motion coupled to spin-3 and spin-4 currents. We match the eigenvalues of a Wilson loop along the time-like direction of the BTZ to that of the spin-4 solution, and show that this yields remarkably consistent gravitational thermodynamics for the latter. This furnishes an important, concrete supporting example for a recent proposal to understand spacetime geometries in three-dimensional higher-spin gravity formulated via SL(N, \( \mathbb{R} \)) × SL(N, \( \mathbb{R} \)) Chern-Simons theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. M. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  4. M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].

    ADS  Google Scholar 

  5. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M.R. Gaberdiel and R. Gopakumar, An AdS3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  8. M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. K. Papadodimas and S. Raju, Correlation Functions in Holographic Minimal Models, Nucl. Phys. B 856 (2012) 607 [arXiv:1108.3077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS3 and Its CFT Dual, arXiv:1106.2580 [INSPIRE].

  12. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, arXiv:1111.3381 [INSPIRE].

  13. M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. M. Henneaux and S.-J. Rey, Nonlinear Winf inity as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].

    Article  ADS  Google Scholar 

  18. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Erratum ibid. 281 (2000) 409] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. B. Chen and J. Long, High Spin Topologically Massive Gravity, JHEP 12 (2011) 114 [arXiv:1110.5113] [INSPIRE].

    ADS  Google Scholar 

  24. J. de Boer and T. Tjin, The Relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. E. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Trans. Am. Math. Soc. 6 (1957) 111 [INSPIRE].

    MATH  Google Scholar 

  26. P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. M. Bañados, Three-dimensional quantum geometry and black holes, INSPIRE.

  28. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S. Carlip and C. Teitelboim, Aspects of black hole quantum mechanics and thermodynamics in (2 + 1)-dimensions, Phys. Rev. D 51 (1995) 622 [gr-qc/9405070] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. C. Pope, L. Romans and X. Shen, The Complete Structure of W(Infinity), Phys. Lett. B 236 (1990) 173 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. C. Pope, L. Romans and X. Shen, A new higher spin algebra and the lone star product, Phys. Lett. B 242 (1990) 401 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. E. Bergshoeff, C. Pope, L. Romans, E. Sezgin and X. Shen, The super Winf inity algebra, Phys. Lett. B 245 (1990) 447 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. I. Bakas and E. Kiritsis, Bosonic realization of a universal W algebra and Zinf inity parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Sen, Quantum Entropy Function from AdS2/CF T1 Correspondence, Int. J. Mod. Phys. A 24 (2009) 4225 [arXiv:0809.3304] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Siong Tan.

Additional information

ArXiv ePrint: 1111.2834

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, H.S. Aspects of three-dimensional spin-4 gravity. J. High Energ. Phys. 2012, 35 (2012). https://doi.org/10.1007/JHEP02(2012)035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)035

Keywords

Navigation