Skip to main content
Log in

Light stop decay in the MSSM with minimal flavour violation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In supersymmetric scenarios with a light stop particle \( {\tilde{t}_1} \) and a small mass difference to the lightest supersymmetric particle (LSP) assumed to be the lightest neutralino, the flavour changing neutral current decay \( {\tilde{t}_1} \to c\tilde{\chi }_1^0 \) can be the dominant decay channel and can exceed the four-body stop decay for certain parameter values. In the framework of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing long stop lifetimes. Stop decay length measurements at the LHC can then be exploited to test models with minimal flavour breaking through Standard Model Yukawa couplings. The decay width has been given some time ago by an approximate formula, which takes into account the leading logarithms of the MFV scale. In this paper we calculate the exact one-loop decay width in the framework of MFV. The comparison with the approximate result exhibits deviations of the order of 10% for large MFV scales due to the neglected non-logarithmic terms in the approximate decay formula. The difference in the branching ratios is negligible. The large logarithms have to be resummed. The resummation is performed by the solution of the renormalization group equations. The comparison of the exact one-loop result and the tree level flavour changing neutral current decay, which incorporates the resummed logarithms, demonstrates that the resummation effects are important and should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Masiero and O. Vives, New physics in CP-violation experiments, Ann. Rev. Nucl. Part. Sci. 51 (2001) 161 [hep-ph/0104027] [SPIRES].

    Article  ADS  Google Scholar 

  2. Y. Grossman, Z. Ligeti and Y. Nir, Future prospects of B physics, Prog. Theor. Phys. 122 (2009) 125 [arXiv:0904.4262] [SPIRES].

    Article  ADS  Google Scholar 

  3. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, arXiv:1002.0900 [SPIRES].

  4. R.S. Chivukula, H. Georgi and L. Randall, A Composite Technicolor Standard Model Of Quarks, Nucl. Phys. B 292 (1987) 93 [SPIRES].

    ADS  Google Scholar 

  5. L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [SPIRES].

    Article  ADS  Google Scholar 

  6. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [SPIRES].

    ADS  Google Scholar 

  7. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavour violation: An effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [SPIRES].

    Article  ADS  Google Scholar 

  8. C. Bobeth et al., Upper bounds on rare K and B decays from minimal flavor violation, Nucl. Phys. B 726 (2005) 252 [hep-ph/0505110] [SPIRES].

    Article  ADS  Google Scholar 

  9. N. Cabibbo, Unitary Symmetry and Leptonic Decays, Phys. Rev. Lett. 10 (1963) 531 [SPIRES].

    Article  ADS  Google Scholar 

  10. M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [SPIRES].

    Article  ADS  Google Scholar 

  11. G. Hiller and Y. Nir, Measuring Flavor Mixing with Minimal Flavor Violation at the LHC, JHEP 03 (2008) 046 [arXiv:0802.0916] [SPIRES].

    Article  ADS  Google Scholar 

  12. G. Hiller, J.S. Kim and H. Sedello, Collider Signatures of Minimal Flavor Mixing from Stop Decay Length Measurements, Phys. Rev. D 80 (2009) 115016 [arXiv:0910.2124] [SPIRES].

    ADS  Google Scholar 

  13. T. Han, K.-i. Hikasa, J.M. Yang and X.-m. Zhang, The FCNC top squark decay as a probe of squark mixing, Phys. Rev. D 70 (2004) 055001 [hep-ph/0312129] [SPIRES].

    ADS  Google Scholar 

  14. S. Kraml and A.R. Raklev, Same-sign top quarks as signature of light stops at the LHC, Phys. Rev. D 73 (2006) 075002 [hep-ph/0512284] [SPIRES].

    ADS  Google Scholar 

  15. S. Bornhauser, M. Drees, S. Grab and J.S. Kim, Light Stop Searches at the LHC in Events with two b-Jets and Missing Energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [SPIRES].

    ADS  Google Scholar 

  16. M.S. Carena, M. Quirós and C.E.M. Wagner, Opening the Window for Electroweak Baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [SPIRES].

    ADS  Google Scholar 

  17. M.S. Carena, M. Quirós and C.E.M. Wagner, Electroweak baryogenesis and Higgs and stop searches at LEP and the Tevatron, Nucl. Phys. B 524 (1998) 3 [hep-ph/9710401] [SPIRES].

    Article  ADS  Google Scholar 

  18. B. de Carlos and J.R. Espinosa, The baryogenesis window in the MSSM, Nucl. Phys. B 503 (1997) 24 [hep-ph/9703212] [SPIRES].

    Article  ADS  Google Scholar 

  19. P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [SPIRES].

    ADS  Google Scholar 

  20. D. Delepine, J.M. Gerard, R. Gonzalez Felipe and J. Weyers, A light stop and electroweak baryogenesis, Phys. Lett. B 386 (1996) 183 [hep-ph/9604440] [SPIRES].

    ADS  Google Scholar 

  21. M. Losada, The two-loop finite-temperature effective potential of the MSSM and baryogenesis, Nucl. Phys. B 537 (1999) 3 [hep-ph/9806519] [SPIRES].

    Article  ADS  Google Scholar 

  22. M. Losada, Mixing effects in the finite-temperature effective potential of the MSSM with a light stop, Nucl. Phys. B 569 (2000) 125 [hep-ph/9905441] [SPIRES].

    Article  ADS  Google Scholar 

  23. V. Cirigliano, S. Profumo and M.J. Ramsey-Musolf, Baryogenesis, electric dipole moments and dark matter in the MSSM, JHEP 07 (2006) 002 [hep-ph/0603246] [SPIRES].

    Article  ADS  Google Scholar 

  24. Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven Electroweak Baryogenesis with highly suppressed Electric Dipole Moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [SPIRES].

    ADS  Google Scholar 

  25. V. Cirigliano, Y. Li, S. Profumo and M.J. Ramsey-Musolf, MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology, JHEP 01 (2010) 002 [arXiv:0910.4589] [SPIRES].

    Article  ADS  Google Scholar 

  26. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The Effective Theory of the Light Stop Scenario, JHEP 10 (2008) 062 [arXiv:0806.4297] [SPIRES].

    Article  ADS  Google Scholar 

  27. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The Baryogenesis Window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [SPIRES].

    Article  ADS  Google Scholar 

  28. K.-i. Hikasa and M. Kobayashi, Light Scalar Top at e + e Colliders, Phys. Rev. D 36 (1987) 724 [SPIRES].

    ADS  Google Scholar 

  29. J.F. Donoghue, H.P. Nilles and D. Wyler, Flavor Changes in Locally Supersymmetric Theories, Phys. Lett. B 128 (1983) 55 [SPIRES].

    ADS  Google Scholar 

  30. P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [SPIRES].

    Article  ADS  Google Scholar 

  31. P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 64 (1976) 159 [SPIRES].

    ADS  Google Scholar 

  32. P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [SPIRES].

    ADS  Google Scholar 

  33. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].

    Article  ADS  Google Scholar 

  34. N. Sakai, Naturalness in Supersymmetric Guts, Zeit. Phys. C 11 (1981) 153 [SPIRES].

    ADS  Google Scholar 

  35. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, Low-Energy Parameters and Particle Masses in a Supersymmetric Grand Unified Model, Prog. Theor. Phys. 67 (1982) 1889 [ibid. 70 (1983) 330] [ibid. 71 (1984) 413] [SPIRES].

    Article  ADS  Google Scholar 

  36. A. Sirlin, Radiative corrections to g(v)/g(μ) in simple extensions of the SU(2) × U(1) gauge model, Nucl. Phys. B 71 (1974) 29 [SPIRES].

    Article  ADS  Google Scholar 

  37. A. Sirlin, Current Algebra Formulation of Radiative Corrections in Gauge Theories and the Universality of the Weak Interactions, Rev. Mod. Phys. 50 (1978) 573 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  38. W.J. Marciano and A. Sirlin, On the Renormalization of the Charm Quartet Model, Nucl. Phys. B 93 (1975) 303 [SPIRES].

    Article  ADS  Google Scholar 

  39. A. Denner and T. Sack, Renormalization Of The Quark Mixing Matrix, Nucl. Phys. B 347 (1990) 203 [SPIRES].

    Article  ADS  Google Scholar 

  40. B.A. Kniehl and A. Pilaftsis, Mixing Renormalization in Majorana Neutrino Theories, Nucl. Phys. B 474 (1996) 286 [hep-ph/9601390] [SPIRES].

    Article  ADS  Google Scholar 

  41. P. Gambino, P.A. Grassi and F. Madricardo, Fermion mixing renormalization and gauge invariance, Phys. Lett. B 454 (1999) 98 [hep-ph/9811470] [SPIRES].

    ADS  Google Scholar 

  42. Y. Yamada, Gauge dependence of the on-shell renormalized mixing matrices, Phys. Rev. D 64 (2001) 036008 [hep-ph/0103046] [SPIRES].

    ADS  Google Scholar 

  43. G. Degrassi, P. Gambino and P. Slavich, QCD corrections to radiative B decays in the MSSM with minimal flavor violation, Phys. Lett. B 635 (2006) 335 [hep-ph/0601135] [SPIRES].

    ADS  Google Scholar 

  44. B.A. Kniehl, F. Madricardo and M. Steinhauser, Gauge-independent W boson partial decay widths, Phys. Rev. D 62 (2000) 073010 [hep-ph/0005060] [SPIRES].

    ADS  Google Scholar 

  45. A. Barroso, L. Brucher and R. Santos, Renormalization of the Cabibbo-Kobayashi-Maskawa matrix, Phys. Rev. D 62 (2000) 096003 [hep-ph/0004136] [SPIRES].

    ADS  Google Scholar 

  46. D.J. Gross and F. Wilczek, Asymptotically Free Gauge Theories. 1, Phys. Rev. D8 (1973) 3633 [SPIRES].

    ADS  Google Scholar 

  47. W.E. Caswell and F. Wilczek, On the Gauge Dependence of Renormalization Group Parameters, Phys. Lett. B 49 (1974) 291 [SPIRES].

    ADS  Google Scholar 

  48. H. Kluberg-Stern and J.B. Zuber, Ward Identities and Some Clues to the Renormalization of Gauge Invariant Operators, Phys. Rev. D 12 (1975) 467 [SPIRES].

    ADS  Google Scholar 

  49. H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 1. Green Functions, Phys. Rev. D 12 (1975) 482 [SPIRES].

    ADS  Google Scholar 

  50. W. Beenakker, R. Hopker, T. Plehn and P.M. Zerwas, Stop decays in SUSY-QCD, Z. Phys. C 75 (1997) 349 [hep-ph/9610313] [SPIRES].

    Google Scholar 

  51. H. Eberl, K. Hidaka, S. Kraml, W. Majerotto and Y. Yamada, Improved SUSY QCD corrections to Higgs boson decays into quarks and squarks, Phys. Rev. D 62 (2000) 055006 [hep-ph/9912463] [SPIRES].

    ADS  Google Scholar 

  52. S. Heinemeyer, H. Rzehak and C. Schappacher, Proposals for Bottom Quark/Squark Renormalization in the Complex MSSM, Phys. Rev. D 82 (2010) 075010 [arXiv:1007.0689] [SPIRES].

    ADS  Google Scholar 

  53. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [SPIRES].

    Article  ADS  Google Scholar 

  54. W. Porod and T. Wohrmann, Higher order top squark decays, Phys. Rev. D 55 (1997) 2907 [hep-ph/9608472] [SPIRES].

    ADS  Google Scholar 

  55. C. Boehm, A. Djouadi and Y. Mambrini, Decays of the lightest top squark, Phys. Rev. D 61 (2000) 095006 [hep-ph/9907428] [SPIRES].

    ADS  Google Scholar 

  56. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [SPIRES].

    ADS  Google Scholar 

  57. C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [SPIRES].

    ADS  Google Scholar 

  58. C. Balázs, M.S. Carena and C.E.M. Wagner, Dark matter, light stops and electroweak baryogenesis, Phys. Rev. D 70 (2004) 015007 [hep-ph/0403224] [SPIRES].

    ADS  Google Scholar 

  59. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].

    Article  ADS  Google Scholar 

  60. B.C. Allanach, SOFTSUSY:a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  61. P.Z. Skands et al., SUSY Les Houches Accord: Interfacing SUSY Spectrum Calculators, Decay Packages and Event Generators, JHEP 07 (2004) 036 [hep-ph/0311123] [SPIRES].

    Article  ADS  Google Scholar 

  62. B.C. Allanach et al., SUSY Les Houches Accord 2, Comp. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [SPIRES].

    Article  ADS  Google Scholar 

  63. F. Mahmoudi et al., Flavour Les Houches Accord: Interfacing Flavour related Codes, arXiv:1008.0762 [SPIRES].

  64. M. Mühlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [SPIRES].

    Article  ADS  Google Scholar 

  65. A. Djouadi, M.M. Mühlleitner and M. Spira, Decays of Supersymmetric Particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [SPIRES].

    ADS  Google Scholar 

  66. E. Lunghi, W. Porod and O. Vives, Analysis of enhanced tan β corrections in MFV GUT scenarios, Phys. Rev. D 74 (2006) 075003 [hep-ph/0605177] [SPIRES].

    ADS  Google Scholar 

  67. J.F. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1, Nucl. Phys. B 272 (1986) 1 [SPIRES]

    Article  ADS  Google Scholar 

  68. J.F. Gunion and H.E. Haber, Errata for Higgs bosons in supersymmetric models: 1, 2 and 3, hep-ph/9301205 [SPIRES].

  69. M.M. El Kheishen, A.A. Aboshousha and A.A. Shafik, Analytic formulas for the neutralino masses and the neutralino mixing matrix, Phys. Rev. D 45 (1992) 4345 [SPIRES].

    ADS  Google Scholar 

  70. H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [SPIRES].

    Article  ADS  Google Scholar 

  71. A. Djouadi, J. Kalinowski, P. Ohmann and P.M. Zerwas, Heavy SUSY Higgs bosons at e + e linear colliders, Z. Phys. C 74 (1997) 93 [hep-ph/9605339] [SPIRES].

    Google Scholar 

  72. A. Djouadi et al., Higgs particles, hep-ph/9605437 [SPIRES].

  73. A. Djouadi, Y. Mambrini and M. Muhlleitner, Chargino and neutralino decays revisited, Eur. Phys. J. C 20 (2001) 563 [hep-ph/0104115] [SPIRES].

    Article  ADS  Google Scholar 

  74. E. Boos, A. Djouadi, M. Muhlleitner and A. Vologdin, The MSSM Higgs bosons in the intense coupling regime, Phys. Rev. D 66 (2002) 055004 [hep-ph/0205160] [SPIRES].

    ADS  Google Scholar 

  75. G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [SPIRES].

    Article  ADS  Google Scholar 

  76. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

    Article  ADS  Google Scholar 

  77. C. Balzereit, T. Mannel and B. Plumper, Renormalization group evolution of the CKM matrix, Eur. Phys. J. C 9 (1999) 197 [hep-ph/9810350] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mühlleitner.

Additional information

ArXiv ePrint: 1102.5712

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlleitner, M., Popenda, E. Light stop decay in the MSSM with minimal flavour violation. J. High Energ. Phys. 2011, 95 (2011). https://doi.org/10.1007/JHEP04(2011)095

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2011)095

Keywords

Navigation