Skip to main content
Log in

Annihilation decays of bound states at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

At the Large Hadron Collider, heavy particles may be produced in pairs close to their kinematic threshold. If these particles have strong enough attractive interactions they may form bound states. Consequently, the bound states may decay through annihilation back into the standard model. Such annihilation decays have the potential to provide much information about the bound particles, such as their mass, spin, or charges, in a manner completely complementary to standard single particle cascade decays. Many of the signatures, such as dijet resonances, will be challenging to find, but may be extremely helpful in unraveling the nature of the new physics. In the standard model, the only novel annihilation decays would be for toponium; these will be hard to see because of the relatively large width of the top quark itself. In models with supersymmetry, marginally visible annihilation decays may occur for example, from bound states of gluinos to dijets or tops. If new particles are bound through forces stronger than QCD, annihilation decays may even be the discovery mode for new physics. This paper presents various theoretical results about bound states and then addresses the practical question of whether any of their annihilation decays can be seen at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.T. Goldman and H. Haber, Gluinonium: the hydrogen atom of supersymmetry, Physica 15 D (1985) 181 [SPIRES].

    ADS  Google Scholar 

  2. W.-Y. Keung and A. Khare, Two-gluino bound states, Phys. Rev. D 29 (1984) 2657 [SPIRES].

    ADS  Google Scholar 

  3. J.H. Kuhn and S. Ono, Production and decay of gluino-gluino bound states, Phys. Lett. B 142 (1984) 436 [SPIRES].

    ADS  Google Scholar 

  4. E. Chikovani, V. Kartvelishvili, R. Shanidze and G. Shaw, Bound states of two gluinos at the Tevatron and CERN LHC, Phys. Rev. D 53 (1996) 6653 [hep-ph/9602249] [SPIRES].

    ADS  Google Scholar 

  5. E. Bouhova-Thacker, V. Kartvelishvili and A. Small, Search for gluino gluino bound states, Nucl. Phys. Proc. Suppl. 133 (2004) 122 [SPIRES].

    Article  ADS  Google Scholar 

  6. E. Bouhova-Thacker, V. Kartvelishvili and A. Small, Search for gluino-gluino bound states with ATLAS, Nucl. Phys. Proc. Suppl. 152 (2006) 300 [SPIRES].

    Article  ADS  Google Scholar 

  7. K. Cheung and W.-Y. Keung, Split supersymmetry, stable gluino and gluinonium, Phys. Rev. D 71 (2005) 015015 [hep-ph/0408335] [SPIRES].

    ADS  Google Scholar 

  8. K. Hagiwara and H. Yokoya, Bound-state effects on gluino-pair production at hadron colliders, JHEP 10 (2009) 049 [arXiv:0909.3204] [SPIRES].

    Article  ADS  Google Scholar 

  9. M.R. Kauth, J.H. Kuhn, P. Marquard and M. Steinhauser, Gluinonia: energy levels, production and decay, Nucl. Phys. B 831 (2010) 285 [arXiv:0910.2612] [SPIRES].

    Article  ADS  Google Scholar 

  10. B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [hep-ph/0202233] [SPIRES].

    Article  ADS  Google Scholar 

  11. H. Baer, K.-m. Cheung and J.F. Gunion, A heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [SPIRES].

    ADS  Google Scholar 

  12. S. Raby and K. Tobe, The phenomenology of SUSY models with a gluino LSP, Nucl. Phys. B 539 (1999) 3 [hep-ph/9807281] [SPIRES].

    Article  ADS  Google Scholar 

  13. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  14. V.S. Fadin and V.A. Khoze, Production of a pair of heavy quarks in e + e annihilation in the threshold region, Sov. J. Nucl. Phys. 48 (1988) 309 [SPIRES].

    Google Scholar 

  15. M. Beneke, A. Signer and V.A. Smirnov, Top quark production near threshold and the top quark mass, Phys. Lett. B 454 (1999) 137 [hep-ph/9903260] [SPIRES].

    ADS  Google Scholar 

  16. Y. Kiyo, J.H. Kuhn, S. Moch, M. Steinhauser and P. Uwer, Top-quark pair production near threshold at LHC, Eur. Phys. J. C 60 (2009) 375 [arXiv:0812.0919] [SPIRES].

    Article  ADS  Google Scholar 

  17. J.H. Kuhn and P.M. Zerwas, The toponium scenario, Phys. Rept. 167 (1988) 321 [SPIRES].

    Article  ADS  Google Scholar 

  18. K. Hagiwara, Y. Sumino and H. Yokoya, Bound-state effects on top quark production at hadron colliders, Phys. Lett. B 666 (2008) 71 [arXiv:0804.1014] [SPIRES].

    ADS  Google Scholar 

  19. J.H. Kuhn and E. Mirkes, Toponium production at hadron colliders, Phys. Lett. B 296 (1992) 425 [SPIRES].

    ADS  Google Scholar 

  20. J.H. Kuhn and E. Mirkes, QCD corrections to toponium production at hadron colliders, Phys. Rev. D 48 (1993) 179 [hep-ph/9301204] [SPIRES].

    ADS  Google Scholar 

  21. N. Fabiano, A. Grau and G. Pancheri, Observability limits for toponium at hadron colliders, Phys. Rev. D 50 (1994) 3173 [SPIRES].

    ADS  Google Scholar 

  22. R.M. Barnett, J.F. Gunion and H.E. Haber, Gluino decay patterns and signatures, Phys. Rev. D 37 (1988) 1892 [SPIRES].

    ADS  Google Scholar 

  23. M. Toharia and J.D. Wells, Gluino decays with heavier scalar superpartners, JHEP 02 (2006) 015 [hep-ph/0503175] [SPIRES].

    Article  ADS  Google Scholar 

  24. W. Kilian, T. Plehn, P. Richardson and E. Schmidt, Split supersymmetry at colliders, Eur. Phys. J. C 39 (2005) 229 [hep-ph/0408088] [SPIRES].

    Article  ADS  Google Scholar 

  25. J.L. Hewett, B. Lillie, M. Masip and T.G. Rizzo, Signatures of long-lived gluinos in split supersymmetry, JHEP 09 (2004) 070 [hep-ph/0408248] [SPIRES].

    Article  ADS  Google Scholar 

  26. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory. Westview Press, U.S.A. (1995), section 5.3.

  27. J.H. Kuhn, J. Kaplan and E.G.O. Safiani, Electromagnetic annihilation of e + e into quarkonium states with even charge conjugation, Nucl. Phys. B 157 (1979) 125 [SPIRES].

    Article  ADS  Google Scholar 

  28. V.A. Khoze, A.D. Martin and M.G. Ryskin, Prospects for new physics observations in diffractive processes at the LHC and Tevatron, Eur. Phys. J. C 23 (2002) 311 [hep-ph/0111078] [SPIRES].

    ADS  Google Scholar 

  29. P.J. Bussey, T.D. Coughlin, J.R. Forshaw and A.D. Pilkington, Central exclusive production of longlived gluinos at the LHC, JHEP 11 (2006) 027 [hep-ph/0607264] [SPIRES].

    Article  ADS  Google Scholar 

  30. G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD predictions for decays of P wave quarkonia, Phys. Rev. D 46 (1992) 1914 [hep-lat/9205006] [SPIRES].

    ADS  Google Scholar 

  31. A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [SPIRES].

    ADS  Google Scholar 

  32. W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].

    ADS  Google Scholar 

  33. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].

    Article  ADS  Google Scholar 

  34. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  35. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  Google Scholar 

  36. http://home.thep.lu.se/∼torbjorn/Pythia.html.

  37. G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [SPIRES].

    Article  ADS  Google Scholar 

  38. http://projects.hepforge.org/siscone/.

  39. CMS collaboration, Study of the top-pair invariant mass distribution in the semileptonic muon channel at 10TeV, CMS-PAS-TOP-09-009.

  40. CMS collaboration, K. Gumus et al., CMS sensitivity to dijet resonances, CMS-NOTE-2006-070.

  41. G.P. Salam, Towards jetography, arXiv:0906.1833 [SPIRES].

  42. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  43. for the CMS collaboration, G. Giurgiu, Reconstruction of high transverse momentum top quarks at CMS, arXiv:0909.4894 [SPIRES].

  44. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  45. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].

    ADS  Google Scholar 

  46. ATLAS collaboration, Top quark properties, ATL-PHYS-PUB-2009-044.

  47. S.P. Martin, Diphoton decays of stoponium at the Large Hadron Collider, Phys. Rev. D 77 (2008) 075002 [arXiv:0801.0237] [SPIRES].

    ADS  Google Scholar 

  48. S. Dawson, E. Eichten and C. Quigg, Search for supersymmetric particles in hadron-hadron collisions, Phys. Rev. D 31 (1985) 1581 [SPIRES].

    ADS  Google Scholar 

  49. M.J. Herrero, A. Mendez and T.G. Rizzo, Production of heavy squarkonium at high-energy pp colliders, Phys. Lett. B 200 (1988) 205 [SPIRES].

    ADS  Google Scholar 

  50. M. Drees and M.M. Nojiri, A new signal for scalar top bound state production, Phys. Rev. Lett. 72 (1994) 2324 [hep-ph/9310209] [SPIRES].

    Article  ADS  Google Scholar 

  51. M. Drees and M.M. Nojiri, Production and decay of scalar stoponium bound states, Phys. Rev. D 49 (1994) 4595 [hep-ph/9312213] [SPIRES].

    ADS  Google Scholar 

  52. S.P. Martin and J.E. Younkin, Radiative corrections to stoponium annihilation decays, Phys. Rev. D 80 (2009) 035026 [arXiv:0901.4318] [SPIRES].

    ADS  Google Scholar 

  53. J.E. Younkin and S.P. Martin, QCD corrections to stoponium production at hadron colliders, arXiv:0912.4813 [SPIRES].

  54. P. Moxhay and R.W. Robinett, Searching for scalar quarkonium at proton-anti-proton colliders, Phys. Rev. D 32 (1985) 300 [SPIRES].

    ADS  Google Scholar 

  55. D.S. Gorbunov and V.A. Ilyin, Stoponium search at photon linear collider, JHEP 11 (2000) 011 [hep-ph/0004092] [SPIRES].

    Article  ADS  Google Scholar 

  56. V.D. Barger et al., Superheavy quarkonium production and decays: a new Higgs signal, Phys. Rev. D 35 (1987) 3366 [Erratum ibid. D 38 (1988) 1632] [SPIRES].

    ADS  Google Scholar 

  57. E. Arik, O. Cakir, S.A. Cetin and S. Sultansoy, Fourth generation pseudoscalar quarkonium production and observability at hadron colliders, Phys. Rev. D 66 (2002) 116006 [hep-ph/0208169] [SPIRES].

    ADS  Google Scholar 

  58. C. Kim and T. Mehen, Color octet scalar bound states at the LHC, Phys. Rev. D 79 (2009) 035011 [arXiv:0812.0307] [SPIRES].

    ADS  Google Scholar 

  59. C.D. Carone, J.M. Conroy, M. Sher and I. Turan, Universal extra dimensions and Kaluza Klein bound states, Phys. Rev. D 69 (2004) 074018 [hep-ph/0312055] [SPIRES].

    ADS  Google Scholar 

  60. N. Fabiano and O. Panella, Threshold production of meta-stable bound states of Kaluza Klein excitations in universal extra dimensions, arXiv:0804.3917 [SPIRES].

  61. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].

    ADS  Google Scholar 

  62. J. Kang and M.A. Luty, Macroscopic strings and ’quirks’ at colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].

    Article  ADS  Google Scholar 

  63. M.J. Strassler and M.E. Peskin, The Heavy top quark threshold: QCD and the Higgs, Phys. Rev. D 43 (1991) 1500 [SPIRES].

    ADS  Google Scholar 

  64. V.S. Fadin and V.A. Khoze, Threshold behavior of heavy top production in e + e collisions, Pis’ma Zh. Eksp. Teor. Fiz. 46 (1987) 417 [JETP Lett. 46 (1987) 525] [SPIRES].

    Google Scholar 

  65. V.S. Fadin, V.A. Khoze and N.G. Uraltsev, Large \(B^0-\bar{B}^0\) mixing and physics of the heavy t-quark, presented at Mtg. on Indirect Evidence of New Energy Scales from Low Energy Precision Experiments, June 22-24, Trieste, (1987), available at http://www-lib.kek.jp/cgi-bin/img index?200033095.

  66. V.S. Fadin, V.A. Khoze and T. Sjöstrand, On the threshold behavior of heavy top production, Z. Phys. C 48 (1990) 613 [SPIRES].

    ADS  Google Scholar 

  67. R. Bonciani, S. Catani, M.L. Mangano and P. Nason, NLL resummation of the heavy-quark hadroproduction cross- section, Nucl. Phys. B 529 (1998) 424 [hep-ph/9801375] [SPIRES].

    Article  ADS  Google Scholar 

  68. ATLAS collaboration, E. Cogneras and D. Pallin, Generic tt resonance search with the ATLAS detector, ATL-PHYS-PUB-2006-033.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yevgeny Kats.

Additional information

ArXiv ePrint: 0912.0526

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kats, Y., Schwartz, M.D. Annihilation decays of bound states at the LHC. J. High Energ. Phys. 2010, 16 (2010). https://doi.org/10.1007/JHEP04(2010)016

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2010)016

Keywords

Navigation