Skip to main content
Log in

FCNCs, proton stability, \(g_{\mu } - 2\) discrepancy, neutralino cold dark matter in flipped \(SU(5) \times U(1)_{\chi }\) from F theory with \(A_{4}\) symmetry

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We predict the low energy signatures of a Flipped \(SU(5) \times U(1)_{\chi }\) effective local model, constructed within the framework of F-theory based on \(A_{4}\) symmetry. The Flipped SU(5) model from F Theory in the field of particle physics is prominent due to its ability to construct realistic four-dimensional theories from higher-dimensional compactifications which necessitates a unified description of the fundamental forces and particles of nature, used for exploring various extensions of the Standard Model. We study Flipped \(SU(5) \times U(1)_{\chi }\) Grand Unified Theories (GUTs) with \(A_{4}\) modular symmetry. In our model due to different modular weights assignments, the fermion mass hierarchy exists with different weighton fields. The constraints on the Dirac neutrino Yukawa matrix allows a good tuning to quark and charged lepton masses and mixings for each weighton field, with the neutrino masses and lepton mixing well determined by the type I seesaw mechanism which occurs at the expense of some tuning which manifests itself in charged lepton flavor violating decays which we explore here. The minimal Flipped SU(5) model is supplemented with an extra right-handed type and its complex conjugate electron state, \(E_{c} + \bar{E_{c}}\), as well as neutral singlet fields. The \(E_{c} + \bar{E_{c}}\) pair gets masses of the order of TeV which solves the \(g_{\mu }- 2\) discrepancy. The predictions of the model for charged lepton flavor violation decay rate and proton decay could be tested in near future experiments. Also we detect in our model the existence of neutralino, its charge mass and spin via direct and indirect detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data underlying the results are available as a part of the article. Additional source data required are from [36, 37, 40, 41].

References

  1. Georgianna Charalampous, Stephen F King, George K Leontaris and Ye-Ling Zhou Phys. Rev. D 104 115015 (2021)

    Article  ADS  Google Scholar 

  2. H P Nilles, S Ramos, S Anchez and P K S Vaudrevange JHEP 02 045 (2020)

    Article  ADS  Google Scholar 

  3. T Kobayashi and H Otsuka Phys. Rev. D 102 026004 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  4. X G Liu and G J Ding JHEP 08 134 (2019). [arXiv:1907.01488 [hep-ph]]

    Article  ADS  Google Scholar 

  5. I de Medeiros Varzielas, S F King and Y L Zhou Phys. Rev. D 101 055033 (2020). [arXiv:1906.02208 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  6. G J Ding, F Feruglio and X G Liu JHEP 01 037 (2021). [arXiv:2010.07952 [hep-th]]

    Article  ADS  Google Scholar 

  7. H Georgi and S L Glashow Phys. Rev. Lett. 32 438–441 (1974)

    Article  ADS  Google Scholar 

  8. S F King Prog. Part. Nucl. Phys. 94 217–256 (2017). [arXiv:1701.04413 [hep-ph]]

    Article  ADS  Google Scholar 

  9. E Ma and G Rajasekaran Phys. Rev. D 64 113012 (2001). [arXiv:hep-ph/0106291 [hep-ph]]

    Article  ADS  Google Scholar 

  10. F Bj orkeroth, F J de Anda, I de Medeiros Varzielas and S F King JHEP 06 141 (2015). [arXiv:1503.03306 [hep-ph]]

    Article  ADS  Google Scholar 

  11. P Chen, G J Ding and S F King JHEP 04 239 (2021). [arXiv:2101.12724 [hep-ph]]

    Article  ADS  Google Scholar 

  12. X Du and F Wang JHEP 02 221 (2021). [arXiv:2012.01397 [hep-ph]]

    Article  ADS  Google Scholar 

  13. Y Zhao and H H Zhang JHEP 03 002 (2021). [arXiv:2101.02266 [hep-ph]]

    Article  ADS  Google Scholar 

  14. S F King and Y L Zhou JHEP 04 291 (2021). [arXiv:2103.02633 [hep-ph]]

    Article  ADS  Google Scholar 

  15. G J Ding, S F King and C Y Yao [arXiv:2103.16311 [hep-ph]]

  16. G J Ding, S F King and J N Lu. [arXiv:2108.09655 [hep-ph]]

  17. Kalpana Bora and Gayatri Ghosh Charged Lepton Flavor Violation \(\mu \rightarrow e \gamma\) in \(\mu\)-\(\tau\) Symmetric SUSY SO(10) mSUGRA, NUHM, NUGM and NUSM Theories and LHC Eur. Phys. J. C 75 428 (2015)

    Article  ADS  Google Scholar 

  18. Gayatri Ghosh, Majorana Neutrinos and Clockworked Yukawa Couplings Contribution to Nonobservation of the Rare Leptonic Decay \(l_{i} \rightarrow l_{j} + \gamma\), Clockwork Photon and Clockwork Graviton, LHEP 2023 351 (2023). Contribution to: NuFact2022

  19. J Ellis, Garcia, Nagata, D V Nanopoulos and K A Olive Proton Decay: Flipped vs Unflipped SU(5) JHEP 05 021 (2020)

    Article  ADS  Google Scholar 

  20. K Hamaguchi, S Hor and N Nagata R Symmetric Flipped \(SU(5)\)JHEP 11 140 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gayatri Ghosh Non zero \(\theta _{13}\) and \(\delta _{CP}\) phase with \(A_{4}\) flavor symmetry and deviations to tri bi maximal mixing via \(Z_{2}\times Z_{2}\) invariant perturbations in the neutrino sector Nucl. Phys. B 979 115759 (2022)

    Article  Google Scholar 

  22. Gayatri Ghosh Significance of Broken \(\mu -\tau\) Symmetry in correlating \(\delta _{CP}, \theta _{13}\), Lightest Neutrino Mass and Neutrinoless Double Beta Decay Adv. High Energy Phys. 2021 9563917 (2021)

    Article  Google Scholar 

  23. M Cvetic and L Lin TASI Lectures on Abelian and Discrete Symmetries in F theory PoS TASI 2017 020 (2018)

    Google Scholar 

  24. J J Heckman, A Tavanfar and C Vafa The Point of \(E(8)\) in F theory GUTs JHEP 1008 040 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. R Blumenhagen Gauge Coupling Unification In F-Theory Grand Unified Theories Phys. Rev. Lett. 102 071601 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. G K Leontaris and N D Tracas Gauge coupling flux thresholds, exotic matter and the unification scale in F SU(5) GUT Eur. Phys. J. C 67 489 (2010)

    Article  ADS  Google Scholar 

  27. G K Leontaris and Q Shafi Phenomenology with F-theory SU(5) Phys. Rev. D 96 066023 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. S Cecotti, M C N Cheng, J J Heckman, C Vafa and Yukawa Couplings in F-theory and Non-Commutative Geometry

  29. F Marchesano, D Regalado and G Zoccarato Yukawa hierarchies at the point of E8 in F theory JHEP 04 179 (2015)

    Article  ADS  Google Scholar 

  30. M Mehmood, M U Rehman and Q Shafi Observable proton decay in flipped SU(5) JHEP 02 181 (2021)

    Article  ADS  Google Scholar 

  31. N Sakai and T Yanagida Proton Decay in a Class of Supersymmetric Grand Unified Models Nucl. Phys. B 197 533 (1982)

    Article  ADS  Google Scholar 

  32. B Abi et al [Muon g\(-\)2], Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm Phys. Rev. Lett. 126 141801 (2021)

    Article  ADS  Google Scholar 

  33. G Belanger, F Boudjema, P Brun, A Pukhov, S Rosier-Lees, P Salati and A Semenov Indirect search for dark matter with micrOMEGAs2.4 Comput. Phys. Commun. 182 842–856 (2011)

    Article  ADS  Google Scholar 

  34. Eric Kuflik(Michigan U., MCTP), Joseph Marsano(Chicago U., EFI) Sep, JHEP 03 020 (2011). arXiv:1009.2510 [hep-ph]

  35. Vasileios Basiouris, George K Leontaris(Ioannina U. and CERN), Eur. Phys. J. C 82(11) 1041 (2022). arXiv:2205.00758 [hep-ph]

  36. Georgianna Charalampous, Stephen F King, George K Leontaris and Ye-Ling Zhou Phys. Rev. D 104 115015 (2021). arXiv:2109.11379 [hep-ph]

    Article  ADS  Google Scholar 

  37. Vasileios Basiouris and George K Leontaris Eur. Phys. J. C 82 1041 (2022). arXiv:2205.00758 [hep-ph]

    Article  ADS  Google Scholar 

  38. Stephen F King, George K Leontaris and Ye-Ling Zhou JHEP 03 006 (2024). arXiv:2311.11857 [hep-ph]

    Article  Google Scholar 

  39. Jing Jiang, Tianjun Li and Dimitri V Nanopoulos Nucl. Phys. B 830 195–220 (2010). arXiv:0905.3394

    Article  ADS  Google Scholar 

  40. K Abe et al [Super-Kamiokande], Search for proton decay via \(p \rightarrow e^{+} \pi ^{0}\) and \(\mu \rightarrow e^{+} \pi ^{0}\) in \(0.31 \,\text{ megaton }\cdot \text{ years }\) exposure of the Super\(-\)Kamiokande water Cherenkov detector Phys. Rev. D 95 012004 (2017). [arXiv:1610.03597 [hep-ex]]

    Article  ADS  Google Scholar 

  41. K Abe et al. [Hyper-Kamiokande], Hyper-Kamiokande Design Report. [arXiv:1805.04163 [physics.ins-det]]

Download references

Acknowledgements

GG would like to thank would like to thank University Grants Commission RUSA, MHRD, Government of India for financial support to carry out this work. This work has been presented in arXiv in Cornell University which has arXiv id 2307.09948. This work has been cited in Research Square.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayatri Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: \(SU(5)\times U(1)\) Symmetry

Appendix A: \(SU(5)\times U(1)\) Symmetry

In our pursuit of understanding the flipped \(SU(5)\times U(1)\) model within a generic F-theory framework, we adopt the spectral cover approach and introduce fluxes along U(1) factors to elucidate the geometric properties of matter curves and the massless particle spectrum associated with them. Through this comprehensive analysis, we successfully identify the presence of three generations of chiral matter fields and ascertain the requisite Higgs representations necessary for breaking the symmetry, thereby establishing a robust foundation for further investigations into the model’s low-energy implications and phenomenological predictions. Within each family, the chiral matter fields form a comprehensive 16 spinorial representation of SO(10), amenable to the insightful \(SU(5)\times U(1)_{\chi }\) decomposition [36, 37].

$$\begin{aligned} 16 = 10_{-1} + \bar{5_{3}} + 1_{-5} \end{aligned}$$
(A1)

Consequently, the Standard Model representations find their embedding as follows:

$$\begin{aligned}{} & {} 10_{-1} \Longrightarrow F_{i} = \left( Q_{i}, d_{i}^{c}, \nu _{i}^{c} \right) \end{aligned}$$
(A2)
$$\begin{aligned}{} & {} {\bar{5}}_{+3} \Longrightarrow {\bar{f}}_{i} = \left( u_{i}^{c}, l_{i} \right) \end{aligned}$$
(A3)
$$\begin{aligned}{} & {} 1_{-5} \Longrightarrow l_{i}^{c} = e_{i}^{c} \end{aligned}$$
(A4)

The spontaneous breaking of the flipped SU(5) symmetry unfolds through the utilization of a pair of accommodated Higgs fields.

$$\begin{aligned}{} & {} H=10_{-1}=\left( Q_{H},d_{H}^{c},\nu _{H}^{c}\right) \end{aligned}$$
(A5)
$$\begin{aligned}{} & {} {\bar{H}} = {\bar{10}}_{+1}= \left( {\bar{Q}}_{H},{\bar{d}}_{H}^{c},{{\bar{\nu }}}_{H}^{c}\right) \end{aligned}$$
(A6)

The representation of the MSSM Higgs doublets as fiveplets can be traced back to their origin within the SO(10) group’s 10-dimensional representation.

$$\begin{aligned} h = 5_{+2} = \left( D_{h},h_{d}\right) , {\bar{h}} = {\bar{5}}_{-2}= \left( D_{h},h_{u}\right) \end{aligned}$$
(A7)

This \(U(1)_{\chi }\) charge assignment not only distinguishes between the Higgs \(\bar{5_{-2}}\) fields and the matter anti-fiveplets \(\bar{5_{-3}}\) in the flipped model, but it also plays a crucial role in generating fermion masses through \(SU(5)\times U(1)_{\chi }\) invariant couplings. The generation of fermion masses is attributed to the interaction terms involving \(SU(5) \times U(1)_{\chi }\) invariant couplings.

$$\begin{aligned} W= & {} \lambda _{d}10_{-1}.10_{-1}.5^{h}_{2} + \lambda _{u}10_{-1}.{\bar{5}}_{3}.{\bar{5}}^{{\bar{h}}}_{-2} + \lambda _{d}Q.d^{c}.{h}_{d} \nonumber \\{} & {} + \lambda _{u}\left( Q u^{c}h_{u} + l\nu ^{c}h_{u}\right) + \lambda _{l}e^{c}lh_{d} \end{aligned}$$
(A8)

Notably, the GUT-scale predictions of the flipped model establish a distinct relationship between up-quark and neutrino Dirac mass matrices, characterized by \(m_{t} = m_{\nu _{D}}\). However, contrary to the standard SU(5) model, the flipped model introduces a disparity in the origins of down quark and lepton mass matrices due to their dependence on separate Yukawa couplings. Shifting focus to the Higgs sector, the acquisition of significant vacuum expectation values (VEVs) by H and \({\bar{H}}\) of the order MGUT induces the breaking of \(SU(5) \times U(1)_{\chi }\) to the Standard Model gauge group, while simultaneously conferring substantial masses upon the color triplets, as evidenced by the ensuing mass terms.

$$\begin{aligned} HHh + {\bar{H}}{\bar{H}}{\bar{h}} \Rightarrow<\nu _{H}^{c}>d_{H}^{c}D + <\bar{\nu _{H}^{c}}>\bar{d_{H}^{c}}{\bar{D}} \end{aligned}$$
(A9)

Furthermore, an additional higher-order term responsible for imparting Majorana masses to right-handed neutrinos takes the following form:

$$\begin{aligned} \textit{W} = \frac{1}{M_{s}}\bar{10_{{\bar{H}}}}\bar{10_{{\bar{H}}}}10_{-1}10_{-1} \Rightarrow \frac{1}{M_{s}} <\bar{\nu ^{c}_{H}}^{2}\nu _{i}^{c}\nu _{j}^{c} \end{aligned}$$
(A10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, G. FCNCs, proton stability, \(g_{\mu } - 2\) discrepancy, neutralino cold dark matter in flipped \(SU(5) \times U(1)_{\chi }\) from F theory with \(A_{4}\) symmetry. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03174-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03174-8

Keywords

Navigation