Skip to main content
Log in

Higher-spin interactions: four-point functions and beyond

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work we construct an infinite class of four-point functions for massless higher-spin fields in flat space that are consistent with the gauge symmetry. In the Lagrangian picture, these reflect themselves in a peculiar non-local nature of the corresponding non-abelian higher-spin couplings implied by the Noether procedure that starts from the fourth order. We also comment on the nature of the colored spin-2 excitation present both in the open string spectrum and in the Vasiliev system, highlighting how some aspects of String Theory appear to reflect key properties of Field Theory that go beyond its low energy limit. A generalization of these results to n-point functions, fermions and mixed-symmetry fields is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    ADS  Google Scholar 

  3. M.A. Vasiliev, Consistent equations for interacting massless fields of all spins in the first order in curvatures, Annals Phys. 190 (1989) 59 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. M.A. Vasiliev, Dynamics of massless higher spins in the second order in curvatures, Phys. Lett. B 238 (1990) 305 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. M.A. Vasiliev, Properties of equations of motion of interacting gauge fields of all spins in (3 + 1)-dimensions, Class. Quant. Grav. 8 (1991) 1387 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M.A. Vasiliev, Algebraic aspects of the higher spin problem, Phys. Lett. B 257 (1991) 111 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096 [INSPIRE].

  12. M. Vasiliev, Actions, charges and off-shell fields in the unfolded dynamics approach, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 37 [hep-th/0504090] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  13. M. Vasiliev, Higher-spin gauge theories, in the proceedings of the First Solvay Workshop, May 12-14, Brussels, Belgium (2004).

  14. M. Bianchi and V. Didenko, Massive higher spin multiplets and holography, hep-th/0502220 [INSPIRE].

  15. D. Francia and C. Hull, Higher-spin gauge fields and duality, hep-th/0501236 [INSPIRE].

  16. N. Bouatta, G. Compere and A. Sagnotti, An introduction to free higher-spin fields, hep-th/0409068 [INSPIRE].

  17. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  18. A. Sagnotti, E. Sezgin and P. Sundell, On higher spins with a strong Sp(2, R) condition, hep-th/0501156 [INSPIRE].

  19. D. Francia and A. Sagnotti, Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006) 57 [hep-th/0601199] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Fotopoulos and M. Tsulaia, Gauge invariant lagrangians for free and interacting higher spin fields. A review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. A. Campoleoni, Metric-like lagrangian formulations for higher-spin fields of mixed symmetry, Riv. Nuovo Cim. 033 (2010) 123 [arXiv:0910.3155] [INSPIRE].

    Google Scholar 

  22. A. Sagnotti, Higher spins and current exchanges, arXiv:1002.3388 [INSPIRE].

  23. E. Majorana, Relativistic theory of particles with arbitrary intrinsic momentum, Nuovo Cim. 9 (1932) 335 [INSPIRE].

    Article  Google Scholar 

  24. P.A.M. Dirac, Relativistic wave equations, Proc. Roy. Soc. Lond. A 155 (1936) 447.

    ADS  Google Scholar 

  25. M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  26. W. Rarita and J. Schwinger, On a theory of particles with half integral spin, Phys. Rev. 60 (1941) 61 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group, Annals Math. 40 (1939) 149 [Nucl. Phys. Proc. Suppl. B 6 (1989) 9].

    Google Scholar 

  28. V. Bargmann and E.P. Wigner, Group theoretical discussion of relativistic wave equations, Proc. Nat. Acad. Sci. 34 (1948) 211 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. L. Singh and C. Hagen, Lagrangian formulation for arbitrary spin. 2. The fermion case, Phys. Rev. D 9 (1974) 910 [INSPIRE].

    ADS  Google Scholar 

  30. L. Singh and C. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev. D 9 (1974) 898 [INSPIRE].

    ADS  Google Scholar 

  31. C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  32. J. Fang and C. Fronsdal, Massless fields with half integral spin, Phys. Rev. D 18 (1978) 3630 [INSPIRE].

    ADS  Google Scholar 

  33. B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev. D 21 (1980) 358 [INSPIRE].

    ADS  Google Scholar 

  34. D. Francia and A. Sagnotti, Free geometric equations for higher spins, Phys. Lett. B 543 (2002) 303 [hep-th/0207002] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  35. D. Francia and A. Sagnotti, On the geometry of higher spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [hep-th/0212185] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. D. Francia, Geometric Lagrangians for massive higher-spin fields, Nucl. Phys. B 796 (2008) 77 [arXiv:0710.5378] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. D. Francia and A. Sagnotti, Minimal local Lagrangians for higher-spin geometry, Phys. Lett. B 624 (2005) 93 [hep-th/0507144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. A. Pashnev and M. Tsulaia, Dimensional reduction and BRST approach to the description of a Regge trajectory, Mod. Phys. Lett. A 12 (1997) 861 [hep-th/9703010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. A. Pashnev and M. Tsulaia, Description of the higher massless irreducible integer spins in the BRST approach, Mod. Phys. Lett. A 13 (1998) 1853 [hep-th/9803207] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. C. Burdik, A. Pashnev and M. Tsulaia, The lagrangian description of representations of the Poincaré group, Nucl. Phys. Proc. Suppl. 102 (2001) 285 [hep-th/0103143] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. I. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  43. I. Buchbinder, A. Pashnev and M. Tsulaia, Massless higher spin fields in the AdS background and BRST constructions for nonlinear algebras, hep-th/0206026 [INSPIRE].

  44. X. Bekaert, I. Buchbinder, A. Pashnev and M. Tsulaia, On higher spin theory: strings, BRST, dimensional reductions, Class. Quant. Grav. 21 (2004) S1457 [hep-th/0312252] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. I. Buchbinder, V. Krykhtin and A. Pashnev, BRST approach to lagrangian construction for fermionic massless higher spin fields, Nucl. Phys. B 711 (2005) 367 [hep-th/0410215] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. D. Francia, On the relation between local and geometric lagrangians for higher spins, J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [INSPIRE].

    Article  ADS  Google Scholar 

  47. D. Francia, String theory triplets and higher-spin curvatures, Phys. Lett. B 690 (2010) 90 [arXiv:1001.5003] [INSPIRE].

    ADS  Google Scholar 

  48. X. Bekaert and N. Boulanger, Tensor gauge fields in arbitrary representations of GL(D, R): duality and Poincaré lemma, Commun. Math. Phys. 245 (2004) 27 [hep-th/0208058] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. X. Bekaert and N. Boulanger, On geometric equations and duality for free higher spins, Phys. Lett. B 561 (2003) 183 [hep-th/0301243] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  50. P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [INSPIRE].

    Article  Google Scholar 

  51. T. Curtright, Massless field supermultiplets with arbitrary spin, Phys. Lett. B 85 (1979) 219 [INSPIRE].

    ADS  Google Scholar 

  52. T. Curtright, Generalized gauge fields, Phys. Lett. B 165 (1985) 304 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. C. Aulakh, I. Koh and S. Ouvry, Higher spin fields with mixed symmetry, Phys. Lett. B 173 (1986) 284 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  54. S. Ouvry and J. Stern, Gauge fields of any spin and symmetry, Phys. Lett. B 177 (1986) 335 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. J. Labastida and T. Morris, Massless mixed symmetry bosonic free fields, Phys. Lett. B 180 (1986) 101 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. W. Siegel and B. Zwiebach, Gauge string fields from the light cone, Nucl. Phys. B 282 (1987) 125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. W. Siegel, Gauging ramond string fields via OSp(1,1/2), Nucl. Phys. B 284 (1987) 632 [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Labastida, Massless bosonic free fields, Phys. Rev. Lett. 58 (1987) 531 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. J. Labastida, Massless particles in arbitrary representations of the Lorentz group, Nucl. Phys. B 322 (1989) 185 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. I. Bose fields, Nucl. Phys. B 815 (2009) 289 [arXiv:0810.4350] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  61. A. Campoleoni, D. Francia, J. Mourad and A. Sagnotti, Unconstrained higher spins of mixed symmetry. II. Fermi fields, Nucl. Phys. B 828 (2010) 405 [arXiv:0904.4447] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Taronna, Higher spins and string interactions, arXiv:1005.3061 [INSPIRE].

  64. A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. A. Fotopoulos and M. Tsulaia, On the Tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. R. Manvelyan, K. Mkrtchyan and W. Ruehl, A generating function for the cubic interactions of higher spin fields, Phys. Lett. B 696 (2011) 410 [arXiv:1009.1054] [INSPIRE].

    ADS  Google Scholar 

  67. R. Manvelyan, K. Mkrtchyan, W. Rühl and M. Tovmasyan, On nonlinear higher spin curvature, Phys. Lett. B 699 (2011) 187 [arXiv:1102.0306] [INSPIRE].

    ADS  Google Scholar 

  68. A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  69. A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys. B 227 (1983) 41 [INSPIRE].

    Article  ADS  Google Scholar 

  70. R. Metsaev, Cubic interaction vertices of totally symmetric and mixed symmetry massless representations of the Poincaré group in D = 6 space-time, Phys. Lett. B 309 (1993) 39 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  71. R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. E. Fradkin and R. Metsaev, Cubic scattering amplitudes for all massless representations of the Poincaré group in any space-time dimension, Phys. Rev. D 52 (1995) 4660 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  73. R. Metsaev, Cubic interaction vertices for higher spin fields, hep-th/9705048 [INSPIRE].

  74. R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, Nucl. Phys. B 859 (2012) 13 [arXiv:0712.3526] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. F.A. Berends, G. Burgers and H. van Dam, Explicit construction of conserved currents for massless fields of arbitrary spin, Nucl. Phys. B 271 (1986) 429 [INSPIRE].

    ADS  Google Scholar 

  77. F.A. Berends, G. Burgers and H. Van Dam, On spin three selfinteractions, Z. Phys. C 24 (1984) 247 [INSPIRE].

    ADS  Google Scholar 

  78. F.A. Berends, G. Burgers and H. van Dam, On the theoretical problems in constructing interactions involving higher spin massless particles, Nucl. Phys. B 260 (1985) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  79. X. Bekaert, N. Boulanger and S. Leclercq, Strong obstruction of the Berends-Burgers-van Dam spin-3 vertex, J. Phys. A 43 (2010) 185401 [arXiv:1002.0289] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  80. N. Boulanger and S. Leclercq, Consistent couplings between spin-2 and spin-3 massless fields, JHEP 11 (2006) 034 [hep-th/0609221] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. X. Bekaert, N. Boulanger, S. Cnockaert and S. Leclercq, On Killing tensors and cubic vertices in higher-spin gauge theories, Fortsch. Phys. 54 (2006) 282 [hep-th/0602092] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. N. Boulanger, S. Leclercq and S. Cnockaert, Parity violating vertices for spin-3 gauge fields, Phys. Rev. D 73 (2006) 065019 [hep-th/0509118] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  83. Y. Zinoviev, On massive spin 2 interactions, Nucl. Phys. B 770 (2007) 83 [hep-th/0609170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  84. Y. Zinoviev, On spin 3 interacting with gravity, Class. Quant. Grav. 26 (2009) 035022 [arXiv:0805.2226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. Y. Zinoviev, On spin 2 electromagnetic interactions, Mod. Phys. Lett. A 24 (2009) 17 [arXiv:0806.4030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  86. Y. Zinoviev, On massive spin 2 electromagnetic interactions, Nucl. Phys. B 821 (2009) 431 [arXiv:0901.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. Y. Zinoviev, Spin 3 cubic vertices in a frame-like formalism, JHEP 08 (2010) 084 [arXiv:1007.0158] [INSPIRE].

    Article  ADS  Google Scholar 

  88. X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [INSPIRE].

    Article  ADS  Google Scholar 

  89. X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. D.J. Gross and P.F. Mende, The high-energy behavior of string scattering amplitudes, Phys. Lett. B 197 (1987) 129 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  91. D.J. Gross and P.F. Mende, String theory beyond the Planck scale, Nucl. Phys. B 303 (1988) 407 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  92. D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].

    Article  ADS  Google Scholar 

  93. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].

    ADS  Google Scholar 

  94. D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].

    ADS  Google Scholar 

  95. D. Amati, M. Ciafaloni and G. Veneziano, Can space-time be probed below the string size?, Phys. Lett. B 216 (1989) 41 [INSPIRE].

    ADS  Google Scholar 

  96. M. Bianchi, J.F. Morales and H. Samtleben, On stringy AdS 5 × S 5 and higher spin holography, JHEP 07 (2003) 062 [hep-th/0305052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. N. Beisert, M. Bianchi, J.F. Morales and H. Samtleben, Higher spin symmetry and N = 4 SYM, JHEP 07 (2004) 058 [hep-th/0405057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. N. Boulanger, S. Leclercq and P. Sundell, On the uniqueness of minimal coupling in higher-spin gauge theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  100. S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  101. R. Haag, J.T. Lopuszanski and M. Sohnius, All possible generators of supersymmetries of the S matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  102. S. Weinberg and E. Witten, Limits on massless particles, Phys. Lett. B 96 (1980) 59 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  103. C. Aragone and S. Deser, Consistency problems of hypergravity, Phys. Lett. B 86 (1979) 161 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  104. C. Aragone and S. Deser, Consistency problems of spin-2 gravity coupling, Nuovo Cim. B 57 (1980) 33 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  105. T. Damour and S. Deser, Higher derivative interactions of higher spin gauge fields, Class. Quant. Grav. 4 (1987) L95 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  106. M. Porrati, Universal limits on massless high-spin particles, Phys. Rev. D 78 (2008) 065016 [arXiv:0804.4672] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  107. M. Porrati and R. Rahman, Intrinsic cutoff and acausality for massive spin 2 fields coupled to electromagnetism, Nucl. Phys. B 801 (2008) 174 [arXiv:0801.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  108. M. Porrati and R. Rahman, A model independent ultraviolet cutoff for theories with charged massive higher spin fields, Nucl. Phys. B 814 (2009) 370 [arXiv:0812.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  109. M. Porrati and R. Rahman, Causal propagation of a charged spin 3/2 field in an external electromagnetic background, Phys. Rev. D 80 (2009) 025009 [arXiv:0906.1432] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  110. S. Weinberg, Photons and gravitons in s matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049.

    Article  MathSciNet  ADS  Google Scholar 

  111. X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, arXiv:1007.0435 [INSPIRE].

  112. G. Barnich and M. Henneaux, Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett. B 311 (1993) 123 [hep-th/9304057] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  113. D.Z. Freedman, P. van Nieuwenhuizen and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev. D 13 (1976) 3214 [INSPIRE].

    ADS  Google Scholar 

  114. S. Deser and B. Zumino, Consistent supergravity, Phys. Lett. B 62 (1976) 335 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  115. A.K. Bengtsson, A unified action for higher spin gauge bosons from covariant string theory, Phys. Lett. B 182 (1986) 321 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  116. M. Henneaux and C. Teitelboim, First and second quantized point particles of any spin, in Quantum mechanics of fundamental systems 2, C. Teitelboim and J. Zanelli eds., Plenum Press, New York U.S.A. (1988).

    Google Scholar 

  117. G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  118. A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  119. G. Barnich, M. Grigoriev, A. Semikhatov and I. Tipunin, Parent field theory and unfolding in BRST first-quantized terms, Commun. Math. Phys. 260 (2005) 147 [hep-th/0406192] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  120. G. Barnich and M. Grigoriev, BRST extension of the non-linear unfolded formalism, hep-th/0504119 [INSPIRE].

  121. M. Grigoriev, Off-shell gauge fields from BRST quantization, hep-th/0605089 [INSPIRE].

  122. A.K. Bengtsson, BRST approach to interacting higher spin gauge fields, Class. Quant. Grav. 5 (1988) 437 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  123. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, 2 volumes, Cambridge University Press, Cambridge U.K. (1987).

    Google Scholar 

  124. J. Polchinski, String theory, 2 volumes, Cambridge University Press, Cambridge U.K. (1998).

    Google Scholar 

  125. B. Zwiebach, A first course in string theory, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

  126. K. Becker, M. Becker and J.H. Schwarz, String theory and M-theory: a modern introduction, Cambridge University Press, Cambridge U.K. (2007).

    MATH  Google Scholar 

  127. E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton U.S.A. (2007).

    MATH  Google Scholar 

  128. E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  129. B. Zwiebach, Closed string field theory: quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  130. R. D’Auria and P. Fré, Geometric supergravity in D = 11 and its hidden supergroup, Nucl. Phys. B 201 (1982) 101 [Erratum ibid. B 206 (1982) 496] [INSPIRE].

  131. R. D’Auria and P. Fré, Cartan integrable systems, that is differential free algebras, in Supergravity 1982, September 6-18, Trieste, Italy (1982).

  132. R. D’Auria, P. Fré, P. Townsend and P. van Nieuwenhuizen, Invariance of actions, rheonomy and the new minimal N = 1 supergravity in the group manifold approach, Annals Phys. 155 (1984) 423 [INSPIRE].

    Article  ADS  Google Scholar 

  133. L. Castellani, Group geometric methods in supergravity and superstring theories, Int. J. Mod. Phys. A 7 (1992) 1583 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  134. D. Sullivan, Infinitesimal computations in topology, Publ. Math. IHES 47 (1977) 269.

    MATH  Google Scholar 

  135. J. Stasheff, Homotopy associativity of H-spaces, I, Trans. Amer. Math. Soc. 108 (1963) 293.

    MathSciNet  Google Scholar 

  136. J. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics 161, Springer, U.S.A. (1970).

  137. T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  138. I. Batalin and G. Vilkovisky, Relativistic S matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977) 309 [INSPIRE].

    ADS  Google Scholar 

  139. I. Batalin and G. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102 (1981) 27 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  140. M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].

    ADS  Google Scholar 

  141. G. Barnich and M. Grigoriev, First order parent formulation for generic gauge field theories, JHEP 01 (2011) 122 [arXiv:1009.0190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  142. M. Grigoriev, Parent formulation at the lagrangian level, JHEP 07 (2011) 061 [arXiv:1012.1903] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  143. I. Buchbinder, A. Fotopoulos, A.C. Petkou and M. Tsulaia, Constructing the cubic interaction vertex of higher spin gauge fields, Phys. Rev. D 74 (2006) 105018 [hep-th/0609082] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  144. A. Fotopoulos and M. Tsulaia, Interacting higher spins and the high energy limit of the bosonic string, Phys. Rev. D 76 (2007) 025014 [arXiv:0705.2939] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  145. A. Fotopoulos and M. Tsulaia, Current exchanges for reducible higher spin multiplets and gauge fixing, JHEP 10 (2009) 050 [arXiv:0907.4061] [INSPIRE].

    Article  ADS  Google Scholar 

  146. S. Deser, Selfinteraction and gauge invariance, Gen. Rel. Grav. 1 (1970) 9 [gr-qc/0411023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  147. R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966).

    MATH  Google Scholar 

  148. J.E. Paton and H.-M. Chan, Generalized Veneziano model with isospin, Nucl. Phys. B 10 (1969) 516 [INSPIRE].

    Article  ADS  Google Scholar 

  149. J.H. Schwarz, Gauge groups for type I superstrings, presented at 6th Johns Hopkins workshop on current problems in high-energy particle theory, June 2-4, Florence, Italy (1982).

  150. N. Marcus and A. Sagnotti, Tree level constraints on gauge groups for type I superstrings, Phys. Lett. B 119 (1982) 97 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  151. N. Marcus and A. Sagnotti, Group theory from quarks at the ends of strings, Phys. Lett. B 188 (1987) 58 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  152. D. Gao and K. Hori, On the structure of the Chan-Paton factors for D-branes in type II orientifolds, arXiv:1004.3972 [INSPIRE].

  153. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  154. H. Kawai, D. Lewellen and S. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  155. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  156. F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].

    Article  ADS  Google Scholar 

  157. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  158. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  159. P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].

  160. P. Benincasa and E. Conde, On the tree-level structure of scattering amplitudes of massless particles, JHEP 11 (2011) 074 [arXiv:1106.0166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  161. K. Alkalaev, M. Grigoriev and I. Tipunin, Massless Poincaré modules and gauge invariant equations, Nucl. Phys. B 823 (2009) 509 [arXiv:0811.3999] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  162. A. Sagnotti, Open Strings and their Symmetry Groups, in Cargese ’87: non-perturbative quantum field theory, G. Mack et al., Pergamon Press, U.K. (1988), hep-th/0208020 [INSPIRE].

    Google Scholar 

  163. G. Pradisi and A. Sagnotti, Open string orbifolds, Phys. Lett. B 216 (1989) 59 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  164. P. Hořava, Strings on world sheet orbifolds, Nucl. Phys. B 327 (1989) 461 [INSPIRE].

    Article  ADS  Google Scholar 

  165. P. Hořava, Background duality of open string models, Phys. Lett. B 231 (1989) 251 [INSPIRE].

    ADS  Google Scholar 

  166. M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  167. M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  168. M. Bianchi, G. Pradisi and A. Sagnotti, Toroidal compactification and symmetry breaking in open string theories, Nucl. Phys. B 376 (1992) 365 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  169. A. Sagnotti, A note on the Green-Schwarz mechanism in open string theories, Phys. Lett. B 294 (1992) 196 [hep-th/9210127] [INSPIRE].

    ADS  Google Scholar 

  170. E. Dudas, Theory and phenomenology of type-I strings and M-theory, Class. Quant. Grav. 17 (2000) R41 [hep-ph/0006190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  171. C. Angelantonj and A. Sagnotti, Open strings, Phys. Rept. 371 (2002) 1 [Erratum ibid. 376 (2003) 339-405] [hep-th/0204089] [INSPIRE].

  172. S. Sugimoto, Anomaly cancellations in type-I D9-\( \overline D 9 \) system and the USp(32) string theory, Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  173. I. Antoniadis, E. Dudas and A. Sagnotti, Brane supersymmetry breaking, Phys. Lett. B 464 (1999) 38 [hep-th/9908023] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  174. C. Angelantonj, Comments on open string orbifolds with a nonvanishing B(ab), Nucl. Phys. B 566 (2000) 126 [hep-th/9908064] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  175. G. Aldazabal and A. Uranga, Tachyon free nonsupersymmetric type IIB orientifolds via brane-anti-brane systems, JHEP 10 (1999) 024 [hep-th/9908072] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  176. C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas and A. Sagnotti, Type I vacua with brane supersymmetry breaking, Nucl. Phys. B 572 (2000) 36 [hep-th/9911081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  177. E. Dudas and J. Mourad, Consistent gravitino couplings in nonsupersymmetric strings, Phys. Lett. B 514 (2001) 173 [hep-th/0012071] [INSPIRE].

    ADS  Google Scholar 

  178. G. Pradisi and F. Riccioni, Geometric couplings and brane supersymmetry breaking, Nucl. Phys. B 615 (2001) 33 [hep-th/0107090] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taronna.

Additional information

ArXiv ePrint: hep-th/1107.5843

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taronna, M. Higher-spin interactions: four-point functions and beyond. J. High Energ. Phys. 2012, 29 (2012). https://doi.org/10.1007/JHEP04(2012)029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)029

Keywords

Navigation